Меню

Чем создается ток в растворе щелочи

Электрический ток в жидкостях и газах

Электрический ток в жидкостях

Электрический ток в жидкостях и газахВ металлическом проводнике электрический ток образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, — электролизом .

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,— катодом .

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана разность потенциалов, иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду — катоду, а отрицательные ионы — к аноду.

Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами

Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б — источник тока, В — выключатель

Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным — ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди С u и образуется молекула медного купороса С uS О 4 , возвращаемая обратно электролиту.

Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода — анода.

Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Z n SO4. Цинк также будет переноситься с анода на катод.

Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частицами вещества — ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

электролиз

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

Электрический ток в газах

Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые провода воздушных линий, будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа — явление временное, зависящее от действия внешних причин.

Читайте также:  Укажите последовательность оказания пмп при поражении электрическим током

молния

Однако есть и другой вид электрического разряда, называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом «темный покой достаточно ярко освещен быть может». Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

«Свеча Яблочкова», работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.

Электрический ток в газах

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .

Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

Источник

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

istochnik postojannogo toka

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

istochnik postojannogo toka pljus jelektrody

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

jelektroliticheskaja jachejka

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

То есть мы имеем:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl2

Подведем электронный баланс:

Na + + 1e − = Na 0 |∙2

2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na + + 2Cl − = 2Na 0 + Cl2

далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

dipol

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

dipoli vodi katod i anod

При этом могут происходить процессы:

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

Читайте также:  От кабеля монитора бьет током

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

При расплавлении хлорида цинка происходит его диссоциация:

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl2 |∙1

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Zn 2+ + 2e − = Zn 0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Cu 2+ + 2e − = Cu 0

Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e − = 2OH − + H2 |∙1

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н + + 2e − = H2 |∙2

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e − = 2OH − + H2 |∙2

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

Источник

Электрический Ток в Растворах и Расплавах Электролитов

Электрический Ток в Растворах и Расплавах Электролитов

Растворы солей, кислот и оснований называются электролитами . Химически чистая вода почти не проводит электрического тока, но если растворить в воде какую-нибудь соль, например медный купорос, то ток через нее пойдет. При протекании электрического тока через раствор электролитов вместе с зарядом всегда переносится вещество (это явление называется электролизом). Отсюда следует, что носителями тока в этих проводниках являются ионы.

Электрической диссоциацией называется расщепление в воде солей, кислот и щелочей на положительные и отрицательные ионы. Растворы электролитов всегда содержат некоторое число ионов: катионов (положительных ионов) и анионов (отрицательных ионов). Пока электрическое поле отсутствует, ионы совершают только беспорядочное тепловое движение. Но в электрическом поле ионы, подобно электронам в металлах, начинают дрейфовать в направлении действующей на них силы: катионы — к катоду, анионы — к аноду.

Читайте также:  Принцип работы генератора двигателя постоянного тока

Электрический ток в растворах (или расплавах) электролитов представляет собой перемещение ионов обоих знаков в противоположных направлениях. Опыт показывает, что сила тока при постоянном сопротивлении электролитов линейно зависит от напряжения, т. е. для растворов электролитов справедлив закон Ома.

Электронная теория позволяет рассчитать массу вещества, выделившегося на электродах при электролизе. Она равна массе одного иона m 0 , умноженной на число ионов N, которые осели на электродах. Масса одного

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_19111.jpg

Величины N A и е являются универсальными постоянными, а М и z постоянны для данного вещества. Поэтому выражение

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_32492.jpg— величина, постоянная для данного вещества.

Масса вещества, выделившегося на электроде, пропорциональна заряду, прошедшему через раствор (или пропорциональна силе тока и времени). Эта зависимость носит название закона Фарадея.

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_21060.jpg

Коэффициент k называется электрохимическим эквивалентом данного вещества. Он выражается в килограммах на кулон (кг/Кл).

Закон Фарадея позволяет определить заряд одновалентного иона:

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov.jpg

Электролиз получил широкое применение в технике:

  • получение щелочных и щелочноземельных металлов (алюминия, магния, бериллия и др.);
  • покрытие трудно окисляемыми металлами деталей для предохранения их от коррозии;
  • гальванопластика — изготовление рельефных металлических копий предметов и др.

Источник



Прохождение тока через растворы

Механизм прохождения тока через растворРис. 75. Механизм прохождения тока через раствор

По современным воззрениям, электрический ток в металлических проводниках — это поток электронов, передвигающихся от отрицательного полюса источника тока к положительному полюсу.

Источник тока, например гальванический элемент, представляет собой прибор, в котором на отрицательном полюсе накапливается больше электронов, чем на положительном, отчего на первом создается как бы некоторое давление электронов. Если соединить полюсы элемента металлической проволокой, то под влиянием этого давления электроны начинают передвигаться по проволоке от отрицательного полюса к положительному так же, как газ переходит от места, где давление больше, туда, где давление меньше. Убыль электронов у отрицательного полюса сейчас же пополняется за счет источника тока, вследствие чего происходит непрерывная циркуляция электронов в проводнике, соединяющем полюсы. Источник тока действует подобно насосу, который засасывает электроны через положительный полюс и снова выталкивает их в проводник через отрицательный полюс.

Если разрезать проволоку, то один конец ее зарядится отрицательно, так как на нем накопится избыток электронов, а дру гой, вследствие недостатка электронов, зарядится положительно; на этом движение электронов по проволоке прекратится.

Положим теперь, что в раствор электролита, например соляной кислоты, опущены два электрода, соединенные с полюсами источника тока, и следовательно, заряженные один положительно, другой — отрицательно. Вода сама по себе не проводник, и электроны не могут перемещаться в ней, как в проволоке, но находящиеся в растворе ионы, притягиваясь к электродам, тотчас же начинают передвигаться по двум противоположным направлениям: положительные ионы двигаются к катоду, отрицательные— к аноду (рис. 75). Достигая катода, положительные ионы получают от него недостающие им электроны и становятся нейтральными атомами. Одновременно с этим отрицательные ионы отдают аноду свои «лишние» электроны, тоже переходя в нейтральные атомы или остатки молекул. Благодаря непрерывному переходу электронов с катода на ионы и с ионов на анод поддерживается движение электронов в проводах, соединяющих полюсы элемента с электродами. В самом же растворе движутся не электроны, а положительно и отрицательно заряженные ионы. Последние как бы переносят электроны через раствор от катода к аноду, хотя в действительности анионы отдают аноду не те электроны, которые перешли из катода в раствор, а свои собственные.

Из сказанного ясно, что растворы, не содержащие ионов, не могут проводить электрический ток.

Движение ионов при прохождении тока через раствор может быть обнаружено прямым опытом. Для такого опыта особенно пригодны соли, ионы которых окрашены. Возьмем, например, синий раствор медного купороса. Окраска этого раствора не может быть приписана наличию в нем ионов SO4», так как многие растворы, содержащие эти ионы, бесцветны (например, растворы H2SO4, Na2SO4, ZnSO4 и др.). Разбавленные же растворы медных солей имеют синий цвет, из чего приходится заключить, что синяя окраска зависит от присутствия ионов меди (точнее—их гидратов).

Раствор медного купаросаРис. 76. Трубки с раствором медного купороса: а — до пропускания электрического тока; б — после пропускания электрического тока.

Чтобы наблюдать движение этих ионов, в U-образную трубку (рис. 76) наливают раствор медного купороса в теплой воде, содержащий немного агар-агара (органическое вещество, получаемое из морских водорослей). По охлаждении раствор превращается в студень, не препятствующий сколько-нибудь заметно движению ионов. Поверх этого студня в оба колена трубки наливают бесцветный раствор какой-нибудь соли, например KNO3, к которому тоже прибавлен агар-агар. При пропускании тока синие ионы меди направляются к отрицательному электроду и постепенно окрашивают бесцветный слой агар-агара в левом колене трубки снизу вверх в синий цвет. В то же время в правом колене трубки граница между синим и бесцветным растворами опускается.

Перемещение ионов происходит с различной скоростью, зависящей, кроме природы ионов, также от температуры, и от напряжения тока. Чем выше температура и чем больше напряжение тока, тем быстрее движутся ионы. Наибольшей скоростью движения обладают ионы водорода,_но все же и они переме щаются очень медленно, всего лишь на 0,2 см в минуту при температуре 18° и падении напряжения в 1 вольт на 1см. Скорости некоторых других ионов при тех же условиях выражаются следующими цифрами: ОН’ — 0,111 см/мин, Na • — 0,027 см/мин, Сl’— 0,0415 см/мин, NO3‘ —0,039 см/мин

Вы читаете, статья на тему Прохождение тока через растворы

Источник