Меню

Чем уменьшить частоту тока

Способы увеличения частоты тока

Наиболее популярным на сегодняшний день методом увеличения (или уменьшения) частоты тока является применение частотного преобразователя. Частотные преобразователи позволяют получить из однофазного или трехфазного переменного тока промышленной частоты (50 или 60 Гц) ток требуемой частоты, например от 1 до 800 Гц, для питания однофазных или трехфазных двигателей.

Наряду с электронными частотными преобразователями, с целью увеличения частоты тока, применяют и электроиндукционные частотные преобразователи, в которых например асинхронный двигатель с фазным ротором работает частично в режиме генератора. Еще есть умформеры — двигатели-генераторы, о которых также будет рассказано в данной статье.

Способы увеличения частоты тока

Электронные преобразователи частоты

Электронные преобразователи частоты позволяют плавно регулировать скорость синхронных и асинхронных двигателей благодаря плавному повышению частоты на выходе преобразователя до заданного значения. Наиболее простой подход обеспечивается заданием постоянной характеристики V/f, а более прогрессивные решения используют векторное управление.

Частотные преобразователи, обычно, включают в себя выпрямитель, который преобразует переменный ток промышленной частоты в постоянный; после выпрямителя стоит инвертор, в простейшем виде — на базе ШИМ, который преобразует постоянное напряжение в переменный ток нагрузки, причем частота и амплитуда задаются уже пользователем, и эти параметры могут отличаться от сетевых параметров на входе в большую или в меньшую сторону.

Выходной блок электронного преобразователя частоты чаще всего представляет собой тиристорный или транзисторный мост, состоящий из четырех или из шести ключей, которые и формируют требуемый ток для питания нагрузки, в частности — электродвигателя. Для сглаживания помех в выходном напряжении, на выходе добавляют EMC-фильтр.

Как говорилось выше, электронный преобразователь частоты использует для своей работы в качестве ключей тиристоры или транзисторы. Для управления ключами применяется микропроцессорный модуль, служащий контроллером, и одновременно выполняющий ряд диагностических и защитных функций.

Между тем, частотные преобразователи бывают все таки двух классов: с непосредственной связью, и с промежуточным звеном постоянного тока. При выборе между этими двумя классами взвешивают достоинства и недостатки того и другого, и определяют целесообразность того или иного для решения насущной задачи.

Частотный преобразователь

С непосредственной связью

Преобразователи с непосредственной связью отличаются тем, что в них используется управляемый выпрямитель, в котором группы тиристоров поочередно отпираясь коммутируют нагрузку, например обмотки двигателя, прямо к питающей сети.

В результате на выходе получаются кусочки синусоид сетевого напряжения, а эквивалентная частота на выходе (для двигателя) становится меньше сетевой, в пределах 60% от нее, то есть от 0 до 36 Гц для 60 Гц входа.

Такие характеристики не позволяют в широких пределах варьировать параметры оборудования в промышленности, от того и спрос на данные решения низок. Кроме этого незапираемые тиристоры сложно управляются, стоимость схем становится выше, да и помех на выходе много, требуются компенсаторы, и как следствие габариты высокие, а КПД низкий.

С звеном постоянного тока

Гораздо лучше в этом отношении частотные преобразователи с ярко выраженным звеном постоянного тока, где сначала переменный сетевой ток выпрямляется, фильтруется, а затем снова схемой на электронных ключах преобразуется в переменный ток нужной частоты и амплитуды. Здесь частота может быть значительно выше. Безусловно, двойное преобразование несколько снижает КПД, зато выходные параметры по частоте как раз соответствуют требованиям потребителя.

Чтобы на обмотках двигателя получить чистый синус, используют схему инвертора, в котором напряжение нужной формы получается благодаря широтно-импульсной модуляции (ШИМ). Электронными ключами здесь служат запираемые тиристоры или IGBT-транзисторы.

Тиристоры выдерживают большие импульсные токи, по сравнению с транзисторами, поэтому все чаще прибегают именно к тиристорным схемам, как в преобразователях с непосредственной связью, так и в преобразователях с промежуточным звеном постоянного тока, КПД получается до 98%.

Справедливости ради отметим, что электронные преобразователи частоты для питающей сети являются нелинейной нагрузкой, и порождают в ней высшие гармоники, это ухудшает качество электроэнергии.

С целью преобразования электроэнергии из одной ее формы в другую, в частности — для повышения частоты тока без необходимости прибегать к электронным решениям, применяют так называемые умформеры — двигатели-генераторы. Такие машины функционируют подобно проводнику электроэнергии, однако на самом деле прямого преобразования электроэнергии, как например в трансформаторе или в электронном частотном преобразователе, как такового не происходит.

Здесь доступны следующие возможности:

постоянный ток может быть преобразован в переменный более высокого напряжения и требуемой частоты;

постоянный ток может быть получен из переменного;

прямое механическое преобразование частоты с повышением или понижением оной;

получение трехфазного тока требуемой частоты из однофазного тока сетевой частоты.

В каноническом виде мотор-генератор представляет собой электродвигатель, вал которого напрямую соединен с генератором. На выходе генератора устанавливают стабилизирующее устройство для улучшения частотных и амплитудных параметров получаемой электроэнергии.

Мотор-генератор (умформер)

В некоторых моделях умформеров якорь содержит обмотки и моторные и генераторные, которые гальванически развязаны, и выводы которых соединены соответственно с коллектором и с выходными контактными кольцами.

В других вариантах встречаются общие обмотки для обоих токов, например для преобразования числа фаз коллектора с контактными кольцами нет, а просто от обмотки статора делаются отводы для каждой из выходных фаз. Так асинхронная машина преобразует однофазный ток в трехфазный (тождественно в принципе увеличению частоты).

Итак, мотор-генератор позволяет преобразовать род тока, напряжение, частоту, количество фаз. До 70-х годов в военной технике СССР использовались преобразователи данного типа, где они питали, в частности, устройства на лампах. Однофазные и трехфазные преобразователи питались постоянным напряжением 27 вольт, а на выходе получалось переменное напряжение 127 вольт 50 герц однофазное или 36 вольт 400 герц трехфазное.

Читайте также:  Из трех фаз постоянного тока

Мощность таких умформеров достигала 4,5 кВА. Подобные машины использовались и в электровозах, где постоянное напряжение 50 вольт преобразовывалось в переменное 220 вольт частотой до 425 герц для питания люминесцентных ламп, и 127 вольт 50 герц для питания бритв пассажиров. Первые ЭВМ часто использовали для своего питания умформеры.

По сей день кое-где еще можно встретить умформеры: на троллейбусах, в трамваях, в электропоездах, где их устанавливали с целью получения низкого напряжения для питания цепей управления. Но нынче они уже вытеснены почти полностью полупроводниковыми решениями (на тиристорах и транзисторах).

Преобразователи типа мотор-генератор ценны рядом достоинств. Во-первых это надежная гальваническая развязка выходной и входной силовых цепей. Во-вторых, на выходе получается чистейший синус без помех, без шумов. Устройство очень просто по своей конструкции, от того и обслуживание довольно бесхитростно.

Это легкий способ получения трехфазного напряжения. Инерция ротора сглаживает броски тока при резком изменении параметров нагрузки. И конечно, здесь очень просто осуществлять рекуперацию электроэнергии.

Не обошлось и без недостатков. Умформеры имеют движущиеся части, от того и ресурс их ограничен. Масса, вес, обилие материалов, и как следствие — высокая стоимость. Шумная работа, вибрации. Необходимость в частой смазке подшипников, чистке коллекторов, замене щеток. КПД в пределах 70%.

Несмотря на недостатки, механические моторы-генераторы по сей день применяются в электроэнергетической отрасли для преобразования больших мощностей. В перспективе моторы-генераторы вполне могут помочь согласованию сетей с частотами 60 и 50 Гц, либо для обеспечения сетей с повышенными требованиями по качеству электроэнергии. Питание обмоток ротора машины в данном случае возможно от твердотельного преобразователя частоты небольшой мощности.

Источник

Чипгуру

  • Форум
    • Правила форума
    • Правила для Редакторов
    • Правила конкурсов
    • Руководство барахольщика
    • Ликбез по форуму
      • Изменить цвет форума
      • Как вставлять фотографии
      • Как вставлять ссылки
      • Как вставлять видео
      • Как обозначить оффтоп
      • Как цитировать
      • Склеивание сообщений
      • Значки тем
      • Подписка на темы
      • Автоподписка на темы
    • БиБиКоды (BBCode)
    • Полигон для тренировок
  • Калькуляторы
    • Металла
    • Обороты, диаметр, скорость
    • Подбора гидроцилиндров
    • Развертки витка шнека
    • Расчёт треугольника
    • Теплотехнический
    • Усилия гибки
  • Каталоги
    • Подшипников
    • Универсально-сборные пр.
    • УСП-12
  • Справочники
    • Марки стали и сплавы
    • Открытая база ГОСТов
    • Применимость сталей
    • Справочник конструктора
    • Справочник ЧГ сталей
    • Сравнение материалов
    • Стандарты резьбы
  • Таблицы
    • Диаметров под резьбу
    • Конусов Морзе
    • Номеров модульных фрез
  • Темы без ответов
  • Активные темы
  • Поиск
  • Наша команда

О частотном регулировании асинхронного привода.

Аватара пользователя

О частотном регулировании асинхронного привода.

Сообщение #1 T-Duke » 10 фев 2016, 16:37

Так как вижу что в соседней теме возникают некоторые споры и даже заблуждения, решил создать отдельную тему, где моя темность осветит некоторые вопросы связанные с асинхронным приводом. Буду стараться говорить простыми словами на пальцах. Всяких дотошных буквоедов, которые цепляются к тому о чем не упомянул для экономии места и времени — прошу идти мимо. Я не собираюсь здесь писать монографию из многих глав, описывая каждый нюанс. Только главное, важное для понимания. Так же для тех кому нечего делать, или хочется холиварить , прошу, не нужно превращать этот форум в подобие чипа. Троллям там самое место, а здесь хочется конструктивно общаться и если кому, что непонятно — задавйте вопросы.

О роторе.
Итак самое главное что нужно сказать и с чего нужно начать. Асинхронные двигатели работают при наличии такого явления как скольжение поля. Когда вращающееся магнитное поле статора по скорости вращения, опережает ротор.
Только при наличии скольжения в беличьем колесе ротора наодится ЭДС и возникает крутящий момент. Детально углубляться не будем. Главное что нужно понимать — если скольжение равно нулю, то есть ротор верится с той же скоростью, что и поле статора, то крутящий момент тоже нулевой.
Второе, что важно понимать — для конкретного двигателя есть предельная величина скольжения. При таком скольжении крутящий момент ротора максимален. Если еще больше увеличить скольжение, то момент начинает падать. Графики момента в зависимости от скольжения (скорости ротора) можно найти в учебниках. Классический пример запуск 50Гц асинхронника от сети 50Гц при большой нагрузке на валу. В начальный момент скольжение очень велико. Ибо ротор почти неподвижен, а поле вертится с полной частотой. Скольжение значительно выше предельного и крутящий момент сильно ниже, чем в случае предельного скольжения. Это объясняется резким ростом потерь в роторе при превышении критического скольжения.

Итак, чтобы получать максимально возможный момент асинхронника во всем диапазоне скоростей, ПЧ должен строго поддерживать одну и ту же величину скольжения — то есть предельное скольжение, или его можно назвать оптимальным. С такой задачей может справиться только векторный частотник. Если двигатель управляется векторным частотником, то там даже при частоте в несколько Гц, возможен полный крутящий момент. Если частотник не векторый, а обычный, у которого нет ОС по скорости ротора, скольжение ротора будет произвольно меняться в зависимости от нагрузки на двигатель, и оптимального момента во всем диапазоне оборотов мы не получим.

Второй важный фактор — статор двигателя. Вернее то, что он электрически представляет собой для сети переменного тока, или для ПЧ. Электрически двигатель собой представляет индуктивность, последовательно включенную со сопротивлением обмоток. И параллельно ко всему этому подключена распределенная межвитковая емкость. Для этой темы емкость обмоток не играет роли, поэтому будем рассматривать статор двигателя как индуктивность и сопростивление включенное последовательно с индуктивностью. Важный момент здесь — номинальная частота, на которую изготовлен двигатель и номинальне напряжение питания в рекомендованном подключении. например частота 50Гц, напряжение 380В — звезда.

Читайте также:  Контрольная работа законы постоянного электрического тока 10 класс с ответами

Чтобы понять поведение двигателя при изменении частоты протекающего через него тока, для начала проведем эксперимент. Вытащим из двигателя ротор, оставим только статор и будем подавать в двигатель переменный ток различной частоты. Зачем убираем ротор? Когда поговорим об асинхроннике как о трансформаторе станет понятно. Убрав же ротор из асинхронника, мы превращием его в банальный дроссель.

Итак убрали ротор и подали на двигатель номинальное напряжение, номинальной частоты, скажем 50Гц. Через обмотки статора начнет течь ток ХХ двигателя и вокруг полюсов статора начнет вращаться магнитное поле с частотой обратной пропорциональной числу пар полюсов. В двухполюсном двигателе частота вращения поля совпадает со сетью — 50Гц. В 4-х полюсном в 2 раза меньше 25Гц, во 8-ми полюсном 12.5Гц и т.д. Но сейчас это не важно. Важно понять что статор предназначен для создания внутри своего объема, вращающегося магнитного поля заданной частоты и силы.

Так вот статор двигателя включен в сеть 50Гц, на которую он рассчитан и по обмоткам течет некий ток ХХ. Возникает вопрос — А что если мы частоту тока сети уменьшим, или увеличим? Возьмем и подадим вместо номинальных 50Гц, частоту 25Гц. Что-то изменится. А именно уменьшится сопротивление обмоток двигателя переменному току. Ровно в 2 раза. Ток ХХ вырастет в два раза. Если подадим на обмотки ток с частотой 100Гц, то сопротивление обмоток увеличится и ток ХХ упадет в 2 раза. То есть статор асинхронника без ротора, ведет себя как классический дроссель — обыная индуктивно-резистивная нагрузка в сети переменного тока.

Об асинхронном двигателе, как о вращающемся трансформаторе.

А теперь первый раз проведу аналогию между асинхронником и трансформатором. Пока на роторе нет нагрузки и ротор вращается равномерно, для сети переменного тока (или ПЧ) двигатель представляет собой аналог первичной обмотки трансформатора включенного в сеть переменного тока. При чем вторичная обмотка которого нагружена на довольно большое сопротивление, представляющее собой различные потери.
Пока на вторичной обмотке обычного транса нет нагрузки, то первичная обмотка ведет себя как дроссель большой индуктивности. Через первичку протекает небольшой ток ХХ, его еще называют током намагничивания.

То же самое и с асинхронником. Пока нагрузки на валу нет, то через обмотку статора протекает небольшой ток ХХ, создающий вращающееся магнитное поле в статоре и компенсирующий разные потери, например на трение в подшипниках.
Снова вернемся к обычному трансу, но теперь во вторичку включим нагрузку, например лампочку. Это моментально приведет к тому, что первичная обмотка почувствует эту нагрузку и отреагирует на это тем, что уменьшит свой имеданс переменногому току. Строго говоря тут нужно говорить не об импедансе, а о принципах работы трансформатора. Но чтобы короче — будем думать, что меняется импеданс, что в принципе тоже правильно, если не вдаваться в детали. То есть как только появится нагрузка на вторичке, в первичке сразу подскочит потребление тока. Аналогичная ситуация с асинхронником. Как только мы дадим нагрузку на ротор, это моментально скажется на обмотке статора и ток через обмотку увеличится, для компенсации воздействия нагрузки.

То есть асинхронный двигатель являет собой вращающийся трансформатор сразу преобразовывающий переменный ток в механическую работу на выходе. Первичкая обмотка такого транса — обмотка статора. Вторичная обмотка — беличье колесо в роторе. Выход не электрический а механический.

Об управлении асинхронным приводом.

Теперь когда мы понмаем, что асинхронник это по сути трансформатор, хоть и своеобразный, рассмотрим работу такого транса на разных частотах.

Если мы подаем на ненагруженный транс номинальную частоту 50Гц, то через первичку течет номинальный ток ХХ. Если уменьшаем частоту до 25Гц, то через транс начинает течь ток ХХ в два раза выше. То есть на ровном месте ток становится выше в два раза. Нагрев обмотки от холостого тока растет уже в четыре раза, по закону Джоуля-Ленца. То есть мы ничего не меняли кроме частоты. Нагрузку не подключали, а ток уже вырос.
Если еще уменьшим частоту, например до 12.5Гц, то ток ХХ вырастет в 4 раза по сравнению с номинальным при 50Гц. Нагрев обмотки током ХХ вырастет уже в 16 раз. То есть видим, что тут что-то нужно делать.

Выход есть. Он называется законом управления V/f = const. Если мы изменяем частоту которой питаем трансформатор, то мы должны изменить и напряжение подаваемое на транс, чтобы не менялся ток через первичку. То есть, если мы питаем двигатель рассчитанный на 380В и 50Гц, от сети частотой 25Гц, то напряжение в этой сети должно составлять уже половину — 190В. Иначе двигатель будет работать в нерасчетном режиме, с большими потерями как в меди, так и в стали статора.

Главный вывод из этого — при уменьшении частоты тока питающего двигатель — необходимо уменьшать напряжение подаваемое на этот двигатель. Этим и занимаются частотники. Когда мы выкручиваем регулятор на 25Гц, частотник вместо положенных 220В дает уже 110В и двигатель работает в своих номинальных параметрах.

А как же на счет крутящего момента ротора? А ему наплевать на напряжение, которым питают статор двигателя. Ротору нужно скольжение и номинальная индукция поля. Если нужное скольжение обеспечено, и хватает тока через обмотки для создания номинальной индукции поля, то обеспечен и номинальный крутящий момент. То есть, если мы питаем асинхронник током частоты 25Гц и напряжением 110В, то это никак не сказывается на крутящем моменте, если скольжение не изменилось.

Читайте также:  Стеклянный аппарат с током

Этот факт и говорит о том, что векторный частотник может давать хороший момент на низах, вплоть до нескольких Гц, так как он выдерживает заданное скольжение. Ограничением крутящего момента на низах, служит сопростивление провода обмоток статора, а если точнее то потери на обмотках при попытке достичь той же индукции поля, при пониженном напряжении питания. Когда частота вращения поля низкая, то на двигатель подается напряжение сильно ниже номинального и больше сказывается влияние оммического сопротивления обмоток. Это равноценно тому, что сам закон V/f=const начинает меняться. Вместо константы в правой части уравнения появляется переменная величина, которая может быть к тому же нелинейной. Хороший векторный частотник знает как управляться с этой перменной, поэтому возможен высокий крутящий момент, даже на частоте порядка 1Гц. Хотя все это ценой повышенных потерь, то есть пониженного КПД двигателя. Тут ничего не поделать это недостатки асинхронного привода.

Вот блин, затронул только самое главное в общих чертах, даже не трогал двигатели с переключением полюсов, а сколько текста уже. Если же вдаваться в детали, то можно целую книгу написать. Так что всяких педантов, прошу понять, что всех деталей нельзя упомянуть в одном посте и выясняя их можно на сотни страниц разойтись.

Если публике будет интересно, то мое темнейшество может осветить вопрос торможения асинхронника, когда он переходит в режим генератора.

Источник

Чем уменьшить частоту тока

Выпрямить — вообще постоянный, т.е. 0 Гц получим!

Если нужна частота, отличная от нуля — счётчик-делитель или в простейшем случае триггер — и вперёд!

Ну а уж если ещё и форму синусоиды сохранить. Тут самый простой способ: мотор-генератор (через редуктор). Если электроникой — тут уже попыхтеть над схемой придётся!

_________________
Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Думайте сами, решайте сами . а вот он-лайн перевод на корявый русский http://translate.ru

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

_________________
Мнение автора не обязательно совпадает с его точкой зрения

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
удивительно, но при взгляде на многих сверху ничего не меняется.

_________________
Мнение автора не обязательно совпадает с его точкой зрения

_________________
Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

ПРИСТ расширяет ассортимент

_________________
Мнение автора не обязательно совпадает с его точкой зрения

Источник



Как можно понизить частоту тока? Какие есть способы?

Нужен преобразователь.
На ЖД пользуются ПЧ50/25, который понижает частоту в 2 раза, и работает без ключевых элементов — на одних диодах.

Людмила Климанова

есть схемы делителя частоты.
можно выпрямить и сгенерировать то. что вам надо.

можно поставить на один вал двигатель и генератор, сделать столько обмоток, сколько вам надо

Эрлан Мурзаев

выпрямить и задать любую частоту через преобразователь .

Можно специальным генератором или преобразователем.

Но с частотой уменьшится и напряжение, но его можно поднять трансформатором

Уточните пожалуйста. где нужно понизить частоту тока.

Анастасия Лебедева

Понизить обороты двигателя электростанции бензиновой или дизельной.

СМОТРЯ для чего.. .
инвертор или частотный преобразователь тебе в помощь!

Катя Воронцова

Всё выше сказанное я перескажу.
На электростанциях — изменением подачи энергоносителя в турбину.
В сети я знаю 2 способа:
выпрямитель, инвертор — очень дорогой и качественный способ
частотный полосовой фильтр — остаются помехи, завиящие от добротности, также снижают мощность передаваемой электроэнергии, зато самый простой способ. Просто настроить конденсатор и индуктивность в резонанс на соответстующую частоту

Если ток прямоугольной формы, то можно понизить в кратное число раз с помощью делителя 🙂
А в общем случае — никак. Выпрямлять его и затем генерировать новую частоту — какой угодно формы.

Изменить частоту может задать частотный преобразователь. Обычно выходную частоту можно задать в пределах 0.1-400Гц Есть модели до 1000Гц

Следует помнить что частотный преобразователь (инвертор) это устройство для регулировки скорости асинхронного двигателя путем изменения частоты. А нестандартное применение может привести к выходу его из строя. Уточните у продавца возможность применения в вашем случае!

Частотный преобразователь можно достаточно тонко настроить под задачу — задать время разгона / торможения, риверс, использовать аналоговый вход, в ряде случаев нужен векторный режим управления.

Возможно вам подойдет что то типа этого INNOVERT

Источник