Меню

Через первую катушку протекает переменный ток график зависимости которого от времени

Тест по физике Резистор, конденсатор и катушка индуктивности в цепи переменного тока для 11 класса

Тест по физике Резистор, конденсатор и катушка индуктивности в цепи переменного тока для 11 класса с ответами. Тест включает в себя 2 варианта. В каждом варианте по 5 заданий.

1 вариант

1. Какой из графиков, приведенных на рисунке 43, выра­жает зависимость активного сопротивления в цепи пере­менного тока от частоты?

Рисунок 43

2. Действующее значение напряжения на участке цепи переменного тока равно 220 В. Какова амплитуда коле­бания напряжения на этом участке?

А. 220 В
Б. 440 В
В. 220√2 В

3. Какой из графиков, приведенных на рисунке 44, соответствует зависимости емкостного сопротивления в цепи. переменного тока от частоты?

Рисунок 44

4. Как изменится амплитуда колебаний силы тока, протекающего через конденсатор, если при неизменной амп­литуде колебаний напряжения частоту колебаний увели­чить в 2 раза?

А. Не изменится.
Б. Увеличится в 2 раза.
В. Уменьшится в 2 раза.

5. Лампы Л1 и Л2 включены в цепь пе­ременного тока (рис. 45). При некото­рой частоте накал ламп одинаков. Как изменится накал, если частоту увели­чить?

Рисунок 45

А. У лампы Л1 увеличится, у Л2 — уменьшится.
Б. У лампы Л1 уменьшится, у Л2 — увеличится.
В. Не изменится.

2 вариант

1. Какой из графиков, приведенных на рисунке 46, выра­жает зависимость индуктивного сопротивления в цепи переменного тока от частоты?

Рисунок 46

2. Амплитудное значение напряжения на участке цепи переменного тока равно 230 В. Каково действующее зна­чение напряжения на этом участке?

А. 230 В
Б. 460 В
В. 230√2 В

3. Активное сопротивление 10 Ом включено в цепь переменного тока с частотой 50 Гц. Чему равна амплитуда ко­лебаний силы тока при амплитуде колебаний напряже­ния на концах активного сопротивления 50 В?

А. 5 А
Б. 0,2 А
В. 0,1 А

4. Как изменится амплитуда колебаний силы тока, протекающего через конденсатор, если при неизменной амп­литуде колебаний напряжения частоту колебаний умень­шить в 2 раза?

А. Не изменится.
Б. Увеличится в 2 раза.
В. Уменьшится в 2 раза.

5. Лампы Л1 и Л2 включены в цепь пе­ременного тока (рис. 47). При некоторой частоте накал ламп одинаков. Как изме­нится накал, если частоту уменьшить?

Рисунок 47

А. У лампы Л1 увеличится, у Л2 — уменьшится.
Б. У лампы Л1 уменьшится, у Л2 — увеличится.
В. Не изменится.

Ответы на тест по физике Резистор, конденсатор и катушка индуктивности в цепи переменного тока для 11 класса
1 вариант
1-А
2-В
3-В
4-Б
5-А
2 вариант
1-Б
2-В
3-А
4-В
5-Б

Источник

Задание №15 ОГЭ по физике

Электричество и магнетизм. Оптика.

Задания №15 ОГЭ по физике охватывают сразу несколько разделов физики, например, раздел электродинамики, магнитных явлений, электромагнитных колебаний. Основные сведения, необходимые для решения таких заданий, представлены в разделе теории. А часть из них можно найти в теоретических разделах заданий №№11–14, поскольку по тематике задания №15 отчасти перекликаются с ними.

Теория к заданию №15 ОГЭ по физике

Параметры линзы

Фокусным расстоянием называют дистанцию между точкой фокусировки (главного фокуса) линзы и ее оптическим центром. Обозначается фокусное расстояние обозначают лат.буквой «F» и измеряют в метрах.

Фокусное расстояние может быть как положительной, так и отрицательной величиной. F>0 для собирающих линз и меньше нуля для рассеивающих.

Обратной к фокусному расстоянию является физ.величина, называемая оптической силой. Ее обозначают буквой «D». Соответственно, формула для определения оптич.силы такова:

Единицей измерения этой физ.величины является диоптрия (обозн.: дптр).

Оптич.силой в 1 дптр считают линзу с фокусным расстоянием в 1 м. Как и фокусное расстояние, D>0 для собирающей линзы и D 0 большой палец укажет направление силы Ампера (см.рисунок).

Реостат

Реостатом называется переменный резистор, т.е. прибор в котором можно произвольно регулировать – уменьшать либо увеличивать – сопротивление. Практическое назначение реостата заключается в установлении в эл.цепи желательной величины силы тока.

Основными элементами прибора являются подвижный контакт на проводящем элементе; посредством перемещения в одну или другую сторону подвижного контакта и осуществляется изменение сопротивления.

Реостат подключается в эл.цепь последовательно относительно прочих ее элементов.

Разбор типовых вариантов заданий №15 ЕГЭ по физике

Демонстрационный вариант 2018

Человек переводит взгляд со страницы книги на облака за окном. Как при этом меняются фокусное расстояние и оптическая сила хрусталика глаза человека?

Установите соответствие между физическими величинами и их возможными изменениями.

Для каждой величины определите соответствующий характер изменения:

  1. увеличивается
  2. уменьшается
  3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения:
  1. Анализируем ситуацию, описанную в условии. Выясняем характер изменения фокусного расстояния.
  2. Определяем связь между оптической силой и фокусным расстоянием. Выясняем характер изменения оптической силы.
  3. Заполняем итоговую таблицу.
Решение:
  1. Строение глаза человека как оптического прибора позволяет ему приспосабливаться к восприятию визуальной информации, находящейся на различном расстоянии. Это означает, что происходит фокусировка изображений в зависимости от их удаленности или, наоборот, приближенности к глазу. И, следовательно, фокусное расстояние для хрусталика (который является собирающей двояковыпуклой линзой) может быть разным, т.е. оно меняется. В данном случае оно увеличилось, поскольку взгляд переводится от книги, которую человек держит в руках, т.е. на расстоянии достаточно близком от глаз, на облака, которые значительно удалены. Вывод: в левую колонку таблицы следует записать число 1.
  2. Поскольку оптическая сила есть физ.величина, обратная фокусному расстоянию (D=1/F), то с его увеличением она будет уменьшаться. Соответственно, в правую колонку таблицы нужно вписать 2.
  3. Заполненная таблица имеет вид:

Первый вариант (Камзеева, № 1)

Ученик включил две одинаковые лампы в сеть постоянного напряжения, как показано на рисунке. Как изменится общее электрическое сопротивление сети и показание амперметра при замыкании ключа.

Установите соответствие между физическими величинами и их возможными изменениями.

Для каждой величины определите соответствующий характер изменения:

  1. увеличивается
  2. уменьшается
  3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения:
  1. Анализируем схему и определяем общее сопротивление в 1-м случае, т.е. при разомкнутом ключе К.
  2. Выясняем, каким станет общее сопротивление во 2-м случае, т.е. при замкнутом ключе К.
  3. Используя з-н Ома для участка цепи, записываем формулу для расчета силы тока. Анализируем формулу и выясняем, как изменится эта физ.величина с учетом изменения сопротивления.
  4. Заполняем итоговую таблицу.
Читайте также:  Принцип измерения тока сопротивления напряжения
Решение:

1. Когда ключ К незамкнут, лампы Л1 и Л2 соединены в цепи последовательно. Это означает, что при незамкнутом К общее сопротивление R составляет: . 2. После замыкания К в цепи возникает дополнительная ветка в виде провода. Когда эл.ток течет просто по проводу, его сопротивление считают равным 0. Возникает ситуация, когда эл.ток может течь произвольно по одному из двух направлений (обозн. красными стрелками):

Очевидно, что большая часть тока в таких случаях идет в направлении меньшего сопротивления. Если же имеется направление нулевого сопротивления, то эл.ток гарантировано потечет именно по нему. Т.е. при замыкании ключа ток через лампу Л2 вообще течь не будет. Следовательно, . Делаем вывод относительно характера изменения 1-й искомой величины: общее сопротивление уменьшается.

3. По з-ну Ома для участка эл.цепи . Из этого уравнения следует, что при постоянном напряжении (см. условие) сила тока обратно пропорциональна сопротивлению, т.е. она увеличивается при снижении сопротивления и наоборот. Тогда получаем: поскольку сопротивление при замыкании К уменьшается, то сила тока будет увеличиваться.

4. Заполняем таблицу:

Второй вариант (Камзеева, № 7)

Две катушки надеты на железный сердечник (см. рис. 1). Через первую катушку протекает переменный ток, график зависимости которого от времени представлен на рисунке 2. Вторая катушка замкнута на гальванометр.

Выберите из предложенного перечня два верных утверждения. Укажите их номера.

  1. Заряд, прошедший через первую катушку в интервале времени от 0 до 10 с, равен 60 Кл.
  2. В интервале времени от 20 до 40 с в катушке 2 возникает индукционный ток.
  3. В интервале времени от 40 до 50 с магнитного поля в катушке 1 не возникает.
  4. Максимальный индукционный ток в катушке 2 возникает в интервале времени от 50 до 60 с.
  5. Заряд, прошедший через вторую катушку в интервале времени от 0 до 20 с, равен 60 Кл.
Алгоритм решения:

1–5. Анализируем утверждения 1–5 и определяем их истинность.

6. Записываем ответ.

Решение:
  1. Из графика видно, что на промежутке 0–10 с (т.е. в течение 10 с) эл.ток постоянный и равен 3 А. Используя формулу , получим: q=I·∆t. Соответственно, имеем: q=3·10=30 (Кл). Утверждение 1 неверно.
  2. На графике показано, что в интервале 20–40 с силой тока в 1-й катушке меняется (от 3 до 2 А). Поскольку обе катушки надеты на один и тот же сердечник, то изменение силы тока в 1-й катушке повлечет за собой изменение внутри и вокруг сердечника магнитного поля, которое в свою очередь вызовет возникновение индукционного эл.тока во второй катушке. Утверждение 2 верно.
  3. На графике в интервале 40–50 с сила тока не меняется. И это означает, что изменения магнитного поля не происходит. Однако поскольку эл.ток (постоянный, равный 2 А) по катушке 1 протекает, то, согласно опыту Эрстеда, магнитное поле вокруг нее существует. Утверждение 3 неверно.
  4. Величина индукционного тока зависит от того, насколько быстро меняется вокруг проводника магн.поле. Изменение магн.поля связано с изменением эл.тока в катушке, причем чем больше изменение тока, тем больше меняется магн.поле и, соответственно, тем большим будет индукц.ток во 2-й катушке. Из графика следует, что индукц.ток возникает в катушке в интервалы 20–40 с и 50–60 с. Но поскольку изменение тока в первом случае составляет |2–3|=1 (A), а во втором – |0–2|=2 (А), то можно утверждать: на интервале 50–60 с изменение магн.поля больше, а значит, и индукц.ток здесь будет большим. И в данной ситуации это означает, что он максимален. Утверждение 4 верно.
  5. В интервале 0–20 с эл.ток в 1-й катушке не меняется, а это значит, что во-2-й катушке ток не возбуждается. Следовательно, во 2-й катушке движения эл.зарядов не происходит, т.е. q=0. Утверждение 5 неверно.

Третий вариант (Камзеева, № 10)

На рисунке представлена электрическая схема, которая содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещен между полюсами постоянного магнита.

Выберите из предложенного перечня два верных утверждения. Укажите их номера.

  1. Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вверх.
  2. Электрический ток, протекающий в проводнике АВ, создает однородное магнитное поле.
  3. При замкнутом ключе электрический ток в проводнике имеет направление от точки А к точки В.
  4. При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
  5. При перемещении ползунка реостата вправо сила Ампера, действующая на проводник АВ, уменьшится.
Алгоритм решения:

1–5. Анализируем предложенные в условии утверждения. Определяем их истинность.

Источник

Переменный ток

На рисунке приведён график зависимости силы тока от времени в колебательном контуре, состоящем из последовательно соединённых конденсатора и катушки, индуктивность которой равна 0,2 Гн. Каково максимальное значение энергии магнитного поля катушки? (Ответ дать в мкДж.)

Энергия магнитного поля: \[W=\frac<2>,\] где \(L\) – индуктивность катушки, \(I\) – сила тока на катушке.
Максимальная сила тока: \[I_=5 \text< мА>\]
Подставим в формулу энергии магнитного поля: \[W=\frac<0,2\text< Гн>\cdot5^2\cdot10^<-6>\text< А$^2$>><2>=2,5 \text< мкДж>\]

К конденсатору, заряд которого 250 пКл, подключили катушку индуктивности. Определите максимальную силу тока (в мА), протекающего через катушку, если циклическая частота свободных колебаний в контуре \(8\cdot10^7\) рад/с.

Период колебаний электромагнитного контура вычисляется по формуле Томсона: \[T=2\pi\sqrt,\] где \(L\) – индуктивность катушки, \(C\) – ёмкость конденсатора.
Циклическая частота: \[\omega=\frac<1><\sqrt> \Rightarrow LC=\frac<1><\omega^2>\]
Закон сохранения для колебательного контура \[W_=W_C\] \[\frac^2><2>=\frac^2><2>=\frac^2><2C>,\] где \(L\) – индуктивность катушки, \(I-\) – максимальная сила тока на катушке, \(C\) – ёмкость конденсатора, \(U_\) – максимальное напряжение, \(q_\) – максимальный заряд на конденсаторе.
Тогда максимальная сила тока равна \[I_=\sqrt<\frac^2>>=q_\omega=250\cdot10^<-12>\text< Кл>\cdot8\cdot10^7\text< рад/с>=20 \text< мА>\]

Читайте также:  Гдз постоянный электрический ток физика

Заряженный конденсатор емкостью 4 мкФ подключили к катушке с индуктивностью 90 мГн. Через какое минимальное время (в мкс) от момента подключения заряд конденсатора уменьшится в 2 раза?

Период колебаний электромагнитного контура вычисляется по формуле Томсона: \[T=2\pi\sqrt,\] где \(L\) – индуктивность катушки, \(C\) – ёмкость конденсатора. Циклическая частота: \[\omega=\frac<1><\sqrt>\] Так как конденсатор изначально заряжен, то колебания можно описывать законом: \[q=q_cos(\omega t)\] \[q=0,5q_\] Заменим циклическую частоту на \(\frac<1><\sqrt>\) и получим \[0,5q_=q_cos\left(\frac<1><\sqrt> t\right) \Rightarrow \frac<1><\sqrt> t=\frac<\pi><3>\] \[t=\frac<\pi \sqrt><3>=628 \text<мкс>\]

Напряжение на концах участка цепи, по которому течет переменный ток, изменяется со временем по закону: \(\displaystyle U = U_0sin\left(\omega t + \frac<2\pi><3>\right)\) . В момент времени \(t = T/12\) мгновенное значение напряжения равно 9 В. Определите амплитуду напряжения.

Зависимость напряжения: \[U = U_0sin\left(\omega t + \frac<2\pi><3>\right),\] \(\omega\) – циклическая частота. \[U=U_0sin\left(\frac<2\pi>\cdot\frac<12>+\frac<2\pi><3>\right)\] \[U=\frac<2>\] \[U_0=2U=18 \text< В>\]

Напряжение, при котором зажигается или гаснет неоновая лампа, включенная в сеть переменного тока, соответствует действующему значению напряжения этой сети. В течение каждого полупериода лампа горит 2/3 мс. Найдите частоту переменного тока.

Зависимость напряжения: \[U = U_0sin(\omega t),\] \(\omega\) – циклическая частота. Действующее напряжение: \[U_<\text<д>>=\frac<\sqrt<2>>\] \[U_<\text<д>> \[\frac<\sqrt<2>> \[sin(\omega t)>\frac<\sqrt<2>><2>\] \[sin(\frac<2\pi> t)>\frac<\sqrt<2>><2>\] Решая это тригонометрическое неравенство на одном периоде синусоиды получаем, что \[\frac<\pi> <4>\[\frac<1> <8>\[t=\frac<4>\] \[T=4t\] \[\nu=\frac<1><4t>=\frac<3><2\cdot4\cdot10^<-3>>=375 \text< Гц>\]

Сила тока в первичной обмотке трансформатора 2 А, напряжение на ее концах 220 В. Напряжение на концах вторичной обмотки 40 В. Определите силу тока во вторичной обмотке. Потерями в трансформаторе пренебречь.

Для идеального трансформатора можно записать ( \(P_1=P_2\) ): \[I_1U_1=I_2U_2\] где \(I_1\) и \(I_2\) – силы тока на первичной и вторичной обмотках, \(U_1\) и \(U_2\) – напряжения на первичной и вторичной обмотках, тогда сила тока на вторичной обмотке равна \[I_2=\frac=\frac<2\text< А>\cdot220\text< В>><40\text< В>>=11 \text< А>\]

Под каким напряжением находится первичная обмотка трансформатора, имеющая 1000 витков, если во вторичной обмотке 3500 витков и напряжение на ней 105 В?

Для трансформатора справедливо: \[\frac=\frac,\] где \(U_2\) и \(U_1\) – напряжения на вторичной и первичной обмотках, \(N_2\) и \(N_1\) – количество витков на вторичной и первичной обмотках, тогда напряжение на первичной обмотке \[U_1=\frac=\frac<105\text< В>\cdot1000><3500>=30 \text< В>\]

Источник



Через первую катушку протекает переменный ток график зависимости которого от времени

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 15. Две катушки надеты на железный сердечник (рис. 1). Через первую катушку протекает электрический ток (график зависимости силы тока от времени представлен на рис. 2). Вторая катушка замкнута на гальванометр.

Используя текст и рисунки, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Заряд, прошедший через первую катушку в интервале времени от 0 до 40 с, равен 120 Кл.

2) Индукционный ток, возникающий в катушке 2 в интервале времени от 0 до 40 с. имеет наибольшее значение.

3) В течение всего времени наблюдения (от 0 до 120 с) в катушках существует магнитное поле.

4) В течение всего времени наблюдения (от 0 до 120 с) в катушке 2 протекает индукционный ток.

5) Заряд, прошедший через вторую катушку в интервале времени от 0 до 40 с, равен 80 Кл.

1) Величину заряда, прошедшего через первую катушку, можно найти из формулы I=q/t, откуда q=It=40∙3=120 Кл.

2) Наибольший индукционный ток во второй катушке будет возникать при наибольшем изменении магнитного потока, проходящего через нее: , а величина магнитного потока тем выше, чем быстрее меняется сила тока в первой катушке. Из графика рис. 2 видно, что наибольшее изменение силы тока наблюдается на интервале от 100 до 120 с.

3) Так как вокруг проводника с током образуется магнитное поле, то пока в первой катушке течет ток, будет наблюдаться магнитное поле вокруг обеих катушек, то есть на интервале от 0 до 120 с.

4) Во второй катушке протекает индукционный ток когда происходит изменение магнитного потока, создаваемое первой катушкой. Изменение магнитного потока в первой катушке возникает при изменении силы тока в ней, то есть на интервалах времени от 40 до 80 с и от 100 до 120 с.

5) Заряд, прошедший через вторую катушку в интервале времени от 0 до 40 с, равен нулю, так как в этот момент времени отсутствует индукционный ток во второй катушке.

Ответ: 13.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • Вариант 1
  • Вариант 1. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1-2
    • 3-4
    • 5-6
    • 7-8
    • 9-10
    • 11-12
    • 13-14
    • 15-16
    • 17-18
    • 19-20
    • 21-22
    • 23-24
    • 25
    • 26
  • Вариант 2
  • Вариант 2. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 26
  • Вариант 3
  • Вариант 3. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 4
  • Вариант 4. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 5
  • Вариант 5. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 6
  • Вариант 6. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 7
  • Вариант 7. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 8
  • Вариант 8. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 9
  • Вариант 9. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 10
  • Вариант 10. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 11
  • Вариант 11. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 12
  • Вариант 12. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 13
  • Вариант 13. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 14
  • Вариант 14. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 15
  • Вариант 15. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 16
  • Вариант 16. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 17
  • Вариант 17. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 18
  • Вариант 18. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 19
  • Вариант 19. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 20
  • Вариант 20. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 21
  • Вариант 21. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 22
  • Вариант 22. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 23
  • Вариант 23. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 24
  • Вариант 24. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 25
  • Вариант 25. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 26
  • Вариант 26. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 27
  • Вариант 27. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 28
  • Вариант 28. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 29
  • Вариант 29. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 30
  • Вариант 30. Задания ОГЭ 2017 Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
Читайте также:  Что такое сигнальный ток утечки

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник