Меню

Что такое бесщеточная система возбуждения тока

ГЛАВА 1.
СИ СТЕМЫ ВОЗБУЖДЕНИЯ БЕСЩЁТОЧНЫХ СИНХРОННЫХ СУДОВЫХ ГЕНЕРАТОРОВ

Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.

1 .1 Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“ TAIYO ”, “ MITSUBISHI ”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от A РН , что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально

Рис. 1.1. Бесщёточный синхронный генератор

смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя , выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератор а . Таким образом, возбудитель совместно с A РН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного тока представляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El . произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

Для предотвращения возникновения токов на валу генератора, появляющихся благодаря разбалансу магнитного сопротивления магнитных цепей, используются изоляторы на боковых крышках, как показано на рис. 1.2. Напряжение на валу для генераторов повышенных напряжений и частот обычно составляет 1 В и менее, и реже несколько вольт. Значение сопротивления изолятора должно быть 1-3 кΩ. Если масляная пленка с принудительной смазкой местами исчезает, это может привести к поломке подшипника или аварии генератора в целом.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

1 .2. Элементы системы возбуждения

Одним из основных элементов системы возбуждения синхрон ных генераторов является трёхфазный трёхобмоточный трансформатор TWT (рис. 1.3). Этот трансформатор разработан для:

Читайте также:  Возникновение тока в воздухе

§ получения тока возбуждения, необходимого генератору для выработки номинального напряжения на холостом ходу и под нагрузкой;

§ поддержания постоянного значения номинального напряжения путём компенсации падений напряжения, возникающих в генераторе в соответствии с векторной диаграммой;

§ подпитки обмотки возбуждения генератора суммарным током, выпрямленным главным выпрямителем.

Конструктивно трёхфазный трансформатор представляет собой систему из трёх обмоток со стальным Ш-образным сердечником, имеющим обмотки напряжения и тока. Уменьшенный размер сердечника используется для получения более упрощённой конструкции. Обмотки размещены таким образом, что воздушное пространство между проводами настолько мало, насколько возможно и таким образом в большой степени улучшает эффективность отвода температуры. Кроме того, поверхность изоляции сконструирована так, что площадь незащищённой поверхности на открытом пространстве увеличена и как результат – уменьшение колебаний температуры на поверхности изоляции. В результате местный перегрев внутри обмоток устраняется, что увеличивает надёжность.

Главный выпрямитель MR разработан для выпрямления выходного тока трёхфазного трансформатора, питания обмотки возбуждения генератора и использует кремниевый элемент выпрямления. Он защищён от обратного напряжения путём применения конденсатора C, описанного ниже так же, как и сам эффект хранения заряда этим конденсатором.

Реактор переменного тока L подсоединяется на фазные клеммы параллельно статорной обмотке генератора и предназначен для сдвига вектора тока холостого хода относительно напряжения генератора на угол, равный примерно 90° в сторону отставания.

Конструкция реактора такова, что величина зазора может быть легко выставлена для получения необходимого значения. Замыкающая секция построена так, что в соответствии с результатами испытаний при работе с высокой температурой, величина зазора, изменённая ухудшением изоляции, может быть успешно компенсирована. Обмотка катушки должна непосредственно проходить вокруг железного сердечника, таким образом, высокая температура в достаточной степени передаётся железному сердечнику. В проекте то же самое рассмотрено относительно изоляции. Результат состоит в том, что реактор имеет компактный размер и обеспечен достаточной индуктивностью, требуемой регулятором.

Вся конструкция в целом пригодна к работе в виде, разработанном для предотвращения появления прогибов и деформаций.

Результаты испытания на вибрацию доказывают, что устройство практически несмещаемо.

Блок конденсаторов С. Этот тщательно подобранный блок конденсаторов позволяет возникать резонансу в цепи реактора переменного тока и конденсатора. Поэтому на ток возбуждения в генераторе практически не влияют изменения значений сопротивления при повышении температуры в цепи возбуждения.

Соответственно, напряжение генератора устойчиво и не колеблется при изменениях температуры. Это позволяет чрезвычайно легко поддерживать напряжения на постоянном уровне, когда генератор запущен и нет необходимости предвозбуждать генератор, у которого небольшой остаточный магнетизм. В результате получаем возможность поддерживать постоянное значение вырабатываемого напряжения. В целом для выпрямительных цепей, имеющих большие значения индуктивности на входе и выходе, вырабатываемая выходная кривая (синусоида) напряжения искажена, что препятствует управлению напряжением через тиристор. Однако при установке конденсатора в цепь выпрямителя, форма кривой напряжения формируется таким образом, что обеспечивается устойчивый контроль изменения переменного напряжения. Конденсатор имеет малые габариты и размеры так, что внутренние потери сведены к миниму­му — отклонение температуры на 10 °С ниже, чем у других конденсаторов. Что касается конструкции, особое внимание уделено варианту комплектации, в котором монтажная площадка и клеммная колодка расположены таким образом, что конденсатор может удовлетворительно работать при качке и вибрации судна.

Внешний реостат уставки напряжения EVA используется в качестве задатчика эталонного напряжения, с которым сравнивается текущее напряжение генератора. В целом, заданное напряжение устанавливается в диапазоне ±5 % от номинального значения и регулируется внешним резистором, имеющим следующие данные: сопротивление R=1,5 kΩ, мощность 2 KW.

Питающий трансформатор PT предназначен для питания цепей AРН. Он удовлетворяет предъявленным требованиям к питанию цепей управления и стандартизирован.

Компенсатор уравнительного тока используется при работе генератора в параллели. Он состоит из: компенсационного токового трансформатора ССТ и разностного токового трансформатора DCT, резистора CCR и нормально замкнутого контакта автоматического выключателя ACB. Данный контакт размыкается при включении на параллельную работу второго генератора. Таким образом, наличие обмотки DCT AРН2, у подключённого в параллель генератора, обеспечивает равномерное распределение реактивной нагрузки между генераторами.

Шунтовой резистор RS является регулируемым реостатом для использования в шунтирующей цепи тиристора, установленного в выходной цепи трёхфазного трансформатора.

Контрольные вопросы

1. Из каких элементов состоит система возбуждения СГ?

2. Как обеспечивается первоначальное возбуждение СГ?

3. Устройство и назначение реактора и блока конденсаторов.

4. Устройство и назначение трехобмоточного трансформатора.

5. Какая электрическая цепь обеспечивает распределение реактивной нагрузки между параллельно работающими генераторами?

Источник

Основные элементы системы возбуждения

Основные элементы системы возбуждения

Неотъемлемой частью синхронных машин является система возбуждения. Система возбуждения предназначена для питания обмотки возбуждения генератора, автоматически регулируемым постоянным током.

Системой возбуждения (СВ) называется совокупность оборудования, аппаратов и устройств, объединённых соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями. В систему возбуждения входят: возбудитель, автоматический регулятор возбуждения (АРВ), коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений [п.5.2.36, ПУЭ].

Обобщенная схема соединения генератора, системы возбуждения и АРВ приведена на рис. 1.

Рис. 1. Обобщенная схема соединения генератора, системы возбуждения и АРВ

Напряжение на выходе системы возбуждения Uf и ток возбуждения if изменяются под действием сигнала, поступающего от АРВ. Требуемый вид этого сигнала зависит от технического исполнения системы возбуждения. В целом схема рис. 1 представляет собой замкнутую систему автоматического регулирования, управляемую на основе обработки по определенному алгоритму режимных параметров, получаемых от трансформаторов напряжения и тока.

Основной элемент системы возбуждения (СВ) – возбудитель, являющийся регулируемым источником постоянного тока. Он может быть выполнен в виде коллекторного генератора постоянного тока, генератора переменного тока с выпрямительным преобразователем или трансформатора с выпрямительным преобразователем. Применение генератора постоянного тока для возбуждения турбогенератора ограничено трудностями, связанными с работой коллектора при высокой скорости вращения. Поэтому на более мощных генераторах применяются возбудители с выпрямителями. Если источником переменного тока, питающим возбудитель, является генератор, выпрямитель может быть неуправляемым (диодным) или управляемым (тиристорным). В первом случае выпрямительный преобразователь проще и надежнее, во втором обеспечено более высокое быстродействие. Если выпрямительный преобразователь питается от трансформатора, он выполняется тиристорным.

Неотъемлемым элементом системы возбуждения является АРВ. Основными задачами АРВ являются поддержание заданного уровня напряжения на выводах генератора (на шинах высокого напряжения электростанций) с заданным статизмом (1-5%). Также с помощью АРВ обеспечивается повышение устойчивости параллельной работы генераторов при нарушениях нормального режима работы энергосистемы. Наиболее распространённым видом АРВ является АРВ сильного действия (АРВ-СД), в котором содержатся каналы демпфирования по производным напряжения и частоты статора и тока ротора.

Помимо перечисленных устройств, в систему возбуждения входят автомат гашения поля (АГП) и устройство начального возбуждения.

Классификация систем возбуждения.

Системы возбуждения генераторов и СК классифицируются по разным признакам.

Читайте также:  Собственная энергия тока энергия магнитного поля

П.1. Системы возбуждения по способу получения питания разделяют на системы независимого возбуждения (СНВ) и системы самовозбуждения (ССВ) и комбинированные.

Независимость оценивается относительно цепи якоря возбуждаемой машины. В схеме СНВ источником является вспомогательный генератор (ВГ), сочленённый с валом возбуждаемой машины (рис. 2г, д, е). Основным преимуществом этого способа является независимость возбуждения от режима работы электрической сети и, как следствие, большая надёжность. Недостатки такой системы определяются недостатками самого возбудителя: невысокая скорость нарастания возбуждения, сниженная надёжность работы коллекторного узла при высоких частотах вращения. В схемах ССВ источниками являются выпрямительные трансформаторы ВТ и ПТ, подключенные непосредственно к цепи якоря генератора (рис. 1а, б). Такие системы возбуждения менее надёжны, чем СНВ. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих режимах должна обеспечивать форсировку тока в обмотке ротора генератора. В комбинированных системах главный преобразователь – диодный выпрямитель питается от ВГ, а тиристорный преобразователь (ТП) питается через выпрямительный трансформатор от выводов генератора (рис. 1в). Примеры каждого из видов показаны на рис. 2.

Рис. 2. Структурные схемы систем возбуждения

а – статическая тиристорная система параллельного самовозбуждения,

б – статическая система смешанного возбуждения,

в – комбинированная одномашинная диодная система возбуждения (как правило, бесщёточная),

г – одномашинная система независимого тиристорного возбуждения,

д – одномашинная диодная система независимого возбуждения (высокочастотная),

е – двухмашинная диодная система независимого возбуждения (высокочастотная или бесщёточная)

П.2. Системы возбуждения по типу вентилей главного преобразователя разделяют на диодные и тиристорные.

В тиристорных системах АРВ воздействует на управление тиристорными преобразователями, в диодных – на управление возбуждением ВГ.

П.3. Системы возбуждения также разделяют на статические, бесщёточные (вращающиеся) и комбинированные.

Статические СВ – это системы, содержащие только неподвижные элементы. Статическими являются только ССВ. У бесщёточных СВ вращаются вентильный преобразователь и якорь обращённого ВГ, и поэтому связь с обмоткой возбуждения генератора осуществляется жёстким соединением без контактных колец и щёток. У комбинированных СВ статическим является вентильный преобразователь, питаемый от ВГ традиционного исполнения.

Помимо сказанного, выделяют параллельные и комбинированные ССВ. Первые (рис. 2а) содержат только один выпрямительный трансформатор, подключаемый к зажимам генератора. Вторые имеют еще и последовательный трансформатор (ПТ), включаемый последовательно в цепь статора (рис. 2б).

У бесщёточных СВ генератор и преобразователь выполняются трёхфазными и многофазными, у комбинированных СНВ вспомогательный генератор выполняется синхронным или индукторным (высокочастотным).

Независимые СВ выполняются одномашинными (рис. 2г, д) и двухмашинными (рис. 2е). У одномашинных СВ ВГ имеет систему самовозбуждения, у двухмашинных – на основе подвозбудителя, выполняемого в виде генератора с постоянными магнитами или индукторного генератора.

Кроме этого, тиристорные СВ могут иметь одногрупповой или двухгрупповой ТП. У последних одна группа, рабочая, рассчитывается на уровни напряжения нормальных режимов, а вторая, форсировочная, имеет повышенное напряжение питания, обеспечивающее форсировку возбуждения.

Общие требования к системам возбуждения.

В нормальном режиме источник возбуждения должен обеспечивать на кольцах ротора номинальное напряжение и номинальный ток возбуждения, при которых генератор выдаёт номинальную мощность. В целях создания запаса по нагреву номинальные значения напряжения и тока системы возбуждения должны превышать номинальные значения напряжения и тока обмотки возбуждения генератора или компенсатора не менее чем 10%.

В аварийном режиме к источнику возбуждения предъявляются требования в отношении быстродействия и предела изменения напряжения на кольцах ротора. С этих позиций система возбуждения оценивается двумя величинами: скоростью нарастания напряжения и кратностью максимального значения напряжения по отношению к номинальному.

Рис. 3. Изменение напряжения возбуждения при форсировке

В соответствии с изложенным количественные характеристики систем возбуждения определяются следующим образом.

П.1.Кратность форсировки возбуждения по напряжению – это потолочное установившееся напряжение системы возбуждения, выраженное в долях номинального напряжения возбуждения

где – потолочное напряжение СВ, – номинальное напряжение СВ.

Для современных систем возбуждения кратность форсировки возбуждения по напряжению составляет

П.2.Скорость изменения напряжения возбуждения – это скорость нарастания или снижения напряжения системы возбуждения или возбудителя при необходимости изменения этого напряжения, выраженная в вольтах в секунду или в относительных единицах в секунду по отношению к номинальному напряжению возбуждения синхронной машины.

, о.е./с.

где – разница между потолочным и номинальным значением напряжения возбуждения, – номинальное напряжение возбуждения, t1 – время, за которое напряжение возрастает от номинального значения до значения

Так как скорость изменения напряжения возбуждения определяется по точке эквивалентного экспоненциального процесса, то представляется возможным заменить в приближенных исследованиях (!) систему возбуждения инерционным звеном первого порядка с передаточной функцией

где – коэффициент усиления звена, замещающего систему возбуждения, – постоянная времени звена.

Различные системы возбуждения имеют ориентировочно следующие постоянные времени:

Тиристорные= 0.02-0.04 с.

Бесщеточная = 0.1-0.15 с.

Высокочастотная = 0.35 с.

Электромашинная с генератором постоянного тока = 0.3-0.5 с.

Номинальная скорость нарастания напряжения возбуждения принимается равной 2 относительных единиц в секунду. Большинство современных вентильных СВ имеет скорость нарастания напряжения значительно большую, чем представленная.

Источник

Бесщеточное возбуждение СТДП, принцип действия, обслуживание.

date image2017-10-25
views image2857

facebook icon vkontakte icon twitter icon odnoklasniki icon

БВУ- бесщеточное возбудительное устройство, применяется в СТДП синхронных трехфазных двигателей продуваемых под избыточным давлением. БВУ — предназначено для питания обмотки возбуждения и автоматического управления током возбуждения СТДП в продолжительных, переходных и аварийных режимах. Состоит из станции управления и возбудителя.

Станция управления с помощью понижающего трансформатора и диодного моста
преобразует переменный ток в постоянный. При асинхронном запуске СТДП выход СУ замыкается на гасящий резистор. При достижении оборотов ротора скольжения менее 5% СУ переключает свой выход резистора на ОВВ — обмотку возбуждения возбудителя (находящуюся на статоре). ,

Возбудитель(генератор постоянного тока) — представляет собой обращенный
синхронный трехфазный генератор с вращающимся мостовым выпрямителем. Обмотки генератора находятся на роторе СТДП и при асинхронном пуске вращаются вместе с ним. При достижении скольжения менее 5% когда запитывается ОВВ, вокруг ОВВ создаётся магнитное поле которое пронизывает обмотки генератора и наводит в них переменную ЭДС, которая затем выпрямляется трёхфазным выпрямительным мостом и подаётся на ОВ в результате ротор СТДП втягивается в синхронизм. Конденсатор шунтирует через себя переменную гармонику играя роль фильтра. Цепочки состоящие из резисторов и управляемых тиристоров предназначенных для защиты ОВ от перенапряжения. Когда на выходе генератора или ОВ напряжение превышает пороговое, тиристоры открываются и источник ЭДС замыкается на малое сопротивление, протекающие большие токи вызывают понижения напряжения. Станция управления также обеспечивает автоматическое гашение поля при отключения двигателя (замыкается на гасящий резистор.)

При понижение напряжения сети на 15 – 20% станция обеспечивает форсировку тока возбуждения до 1,5 Iном., при более глубокой посадке напряжения ( ниже 0,6 – 0,7Iном. ) срабатывает ЗМН.

Станция также форсирует ток возбуждения при увеличении нагрузки на валу двигателя, при снижении нагрузки станция уменьшает ток возбуждения. Таким образом посредством регулировки тока возбуждения станцией постоянно поддерживается высокий cos f около

Читайте также:  Задачи метод контурных токов примеры решения задач

Источник



Системы возбуждения бесщёточных синхронных генераторов

Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.

1.1 Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“TAIYO”, “MITSUBISHI”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от AРН, что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально

Рис. 1.1. Бесщёточный синхронный генератор

смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя, выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератора. Таким образом, возбудитель совместно с AРН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного токапредставляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El. произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

Рис. 1.2. Изоляция вала БСГ от наводящих токов

Для предотвращения возникновения токов на валу генератора, появляющихся благодаря разбалансу магнитного сопротивления магнитных цепей, используются изоляторы на боковых крышках, как показано на рис. 1.2. Напряжение на валу для генераторов повышенных напряжений и частот обычно составляет 1 В и менее, и реже несколько вольт. Значение сопротивления изолятора должно быть 1-3 кΩ. Если масляная пленка с принудительной смазкой местами исчезает, это может привести к поломке подшипника или аварии генератора в целом.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

Дата добавления: 2016-06-29 ; просмотров: 7543 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник