Меню

Что такое датчик холла электродвигатели постоянного тока

Датчики Холла для бесколлекторного двигателя: возвращение квадратурных энкодеров

Это уже третья статья, рассказывающая о квадратурных декодерах, на сей раз с применением к управлению бесколлекторными двигателями.

  • Статья первая: принцип работы квадратурного декодера + код для ардуино.
  • Статья вторая: квадратурный декодер на stm32.

Задача: есть обычный китайский бесколлекторник, нужно его подключить к контроллеру Copley Controls 503. В отличие от копеечных коптерных контроллеров, 503й хочет сигнал с датчиков холла, которых на движке нет. Давайте разбираться, для чего нужны датчики и как их ставить.

Ликбез: принцип работы бесколлекторного двигателя

В качестве иллюстрации я возьму очень распространённый двигатель с двенадцатью катушками в статоре и четырнадцатью магнитами в роторе. Вариантов намотки и количества катушек/магнитов довольно много, но суть всегда остаётся одной и той же. Вот фотография моего экземпляра с двух сторон, отлично видны и катушки, и магниты в роторе:

Чтобы было ещё понятнее, я нарисовал его схему, полюса магнитов ротора обозначены цветом, красный для северного и синий для южного:

На датчики холла пока не обращайте внимания, их всё равно нет 🙂

Что будет, если подать плюс на вывод V, а минус на вывод W (вывод U не подключаем ни к чему)? Очевидно, будет течь ток в катушках, намотанных зелёным проводом. Катушки намотаны в разном направлении, поэтому верхние две катушки будут притягиваться к магнитам 1 и 2, а нижние две к магнитам 8 и 9. Остальные катушки и магниты в такой конфигурации роли практически не играют, поэтому я выделил именно магниты 1,2,8 и 9. При такой запитке мотора он очевидно крутиться не будет, и будет иметь семь устойчивых положений ротора, равномерно распределённых по всей окружности (левая верхняя зелёная катушка статора может притягивать магниты 1, 3, 5, 7, 9, 11, 13).

Давайте записывать наши действия вот в такую табличку:

Угол поворота ротора U V W
n.c. +

А что будет, если теперь подать плюс на U и минус на W? Красные катушки притянут к себе магниты 3,4,10 и 11, таким образом чуть-чуть повернув ротор (я по-прежнему выделяю магниты, за которые ротор тянет):

Давайте посчитаем, на сколько повернётся ротор: между щелями магнитов 1-2 и 3-4 у нас 51.43° (=360°*2/7), а между соответствующими щелями в статоре 60° (=360°/12*2). Таким образом, ротор провернётся на 8.57°. Обновим нашу табличку:

Угол поворота ротора U V W
8.57° + n.c.

Теперь сам бог велел подать + на U и — на V!

Угол поворота ротора U V W
17.14° + n.c.

Теперь опять пора выровнять магниты с зелёными катушками, поэтому подаём напряжение на них, но красный и синий магниты поменялись местами, поэтому теперь нужно подать обратное напряжение:

Угол поворота ротора U V W
25.71° n.c. +

C оставшимися двумя конфигурациями всё ровно так же:

Угол поворота ротора U V W
34.29° n.c. +

Угол поворота ротора U V W
42.85° + n.c.

Если мы снова повторим самый первый шаг, то наш ротор провернётся ровно на одну седьмую оборота. Итак, всего у нашего мотора три вывода, мы можем подать напряжение на два из них шестью разными способами 6 = 2*C 2 3, причём мы их все уже перебрали. Если подавать напряжение не хаотично, а в строгом порядке, который зависит от положения ротора, то двигатель будет вращаться.

Запишем ещё раз всю последовательность для нашего двигателя:

Угол поворота ротора U V W
n.c. +
8.57° + n.c.
17.14° + n.c.
25.71° n.c. +
34.29° n.c. +
42.86° + n.c.

Есть один нюанс: у обычного коллекторного двигателя за переключение обмоток отвечают щётки, а тут нам надо определять положение ротора самим.

Датчики Холла

Теперь давайте поставим три датчика холла в те чёрные точки, обозначенные на схеме. Давайте договоримся, что датчик выдаёт логическую единицу, когда он находится напротив красного магнита. Всего существует шесть (сюрприз!) возможных состояний трёх датчиков: 2 3 — 2. Всего возможных состояний 8, но в силу расстояния между датчиками они не могут все втроём быть в логическом нуле или в логической единице:

Обратите внимание, что они генерируют три сигнала, сдвинутые друг относительно друга на 1/3 периода. Кстати, электрики используют слово градусы, говоря про 120°, чем окончательно запутывают нубов типа меня. Если мы хотим сделать свой контроллер двигателя, то достаточно читать сигнал с датчиков, и соответственно переключать напряжение на обмотках.

Для размещения датчиков я использовал вот такую платку, дизайн которой взял тут. По ссылке лежит проект eagle, так что я просто заказал у китайцев сразу много подобных платок:

Эти платки несут на себе только три датчика холла, больше ничего. Ну, по вкусу можно поставить конденсаторы, я не стал заморачиваться. Очень удобно сделаны длинные прорези для регулировки положения датчиков относительно статора.

Постойте, но ведь это очень похоже на квадратурный сигнал с обычного инкрементального энкодера!

Ещё бы! Единственная разница, что инкрементальные энкодеры дают два сигнала, сдвинутые друг относительно друга на 90°, а у нас три сигнала, сдвинутые на 120°. Что будет, если завести любые два из них на обычный квадратурный декодер, например, той же самой синей таблетки? Мы получим возможность определять положение вала с точностью до четырёх отсчётов на одну седьмую оборота, или 28 отсчётов на оборот. Если вы не поняли, о чём я, прочтите принцип работы квадратурного декодера в первой статье.

Я долго думал, как же мне использовать все три сигнала, ведь у нас происходит шесть событий на одну седьмую оборота, мы должны иметь возможность получить 42 отсчёта на оборот. В итоге решил пойти грубой силой, так как синяя таблетка имеет кучу аппаратных квадратурных декодеров, поэтому я решил в ней завести три счётчика:

Видно, что при каждом событии у нас увеличиваются два из них, поэтому сложив три счётчика, и поделив на два, мы получим равномерно тикающий определитель положения вала, с точностью до 6*7 = 42 отсчёта на оборот!

Вот так выглядит макет подключения датчиков Холла к синей таблетке:

А почему на двигателе сразу нет датчиков?

В некоторых приложениях (например, для коптеров) все эти заморочки не нужны. Контроллеры пытаются угадать происходящее с ротором по току в катушках. С одной стороны, это меньше заморочек, но с другой стороны, иногда приводит к проблемам с моментом старта двигателя, поэтому слабоприменимо, например, в робототехнике, где нужны околонулевые скорости. Давайте попробуем запитать наш движок от обычного китайского коптерного ESC (electronic speed controller).

Мой контроллер хочет на вход PPM сигнал: это импульс с частотой 50Гц, длина импульса задаёт обороты: 1мс — останов, 2мс — максимально возможные обороты (считается как KV двигателя * напряжение).

Вот здесь я выложил исходный код и кубовские файлы для синей таблетки. Таймер 1 генерирует PWM для ESC, таймеры 2,3,4 считают соответствующие квадратурные сигналы. Поскольку в прошлой статье я крайне подробно расписал, где и что кликать, то здесь только даю ссылку на исходный код.

На вход моему ESC я даю пилообразное задание скорости, посмотрим, как он его отработает. Вывод синей таблетки лежит тут, а код, который рисует график, тут.

Поскольку у меня двигатель имеет номинал 400KV, а питание я подал 10В, то максимальные обороты должны быть в районе 4000 об/мин = 419 рад/с. Ну а вот и график подоспел:

Видно, что реальные обороты соответствуют заданию весьма приблизительно, что терпимо для коптеров, но совершенно неприменимо во многих других ситуациях, почему, собственно, я и хочу использовать более совершенные контроллеры, которым нужны сигналы с датчиков холла. Ну и бонусом я получаю угол поворота ротора, что бывает крайне полезно.

Подводим итог

Я провёл детство в обнимку с этой книжкой, но раскурить принципы работы бесколлекторников довелось только сейчас.

Оказывается, что шаговые моторы и вот такое коптерные моторчики — это (концептуально) одно и то же. Разница лишь в количестве фаз: шаговики (обычно, бывают исключения) управляются двумя фазами, сдвинутыми на 90°, а бесколлекторники (опять же, обычно) тремя фазами, сдвинутыми на 120°.

Разумеется, есть и другие, чисто практические отличия: шаговики рассчитаны на увеличение удерживающего момента и повторяемость шагов, в то время как коптерные движки на скорость и плавность вращения, что сказывается на количестве обмоток, подшипниках и т.п. Но в итоге обычный бесколлекторник можно использовать в шаговом режиме, а шаговик в постоянном вращении, управление у них будет одинаковым.

Update: красивая анимация от Arastas:

Источник

Датчик Холла

Что такое датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Читайте также:  Ддт терапия виды токов

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C! Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла.

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

дачик холла внутреннее строение

Supply Voltage – напряжение питания датчика

Voltage Regulator – регулятор напряжения

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

линейный датчик холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

линейный датчик холла график

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

токовые клещи датчик холла

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

дачик холла внутреннее строение

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

ss41 распиновка выводов

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Источник

Датчики Холла и принципы их применения

Датчик Холла (тока, фаз) фиксирует колебания магнитных полей, особенно, возникающих с токами, и их напряженность, что затребовано в чрезвычайно большом спектре приборов для мониторинга положения их узлов. В смартфоне датчики тока обеспечивают работу компаса, «умных» чехлов. В автомобилях измеряют угол распредвалов, коленвалов, момент искрения зажигания, параметры вращения колес, приближение к объектам. Все чаще фазные сенсоры устанавливают вместо геркона. Рассмотрим, что такое датчик Холла, как устроен и типы с описанием где используются.

Основные сведения

Начнем с базовой информации: где находится датчик Холла, что это такое, для чего он нужен. «Голый» датчик — это небольшой измеритель (сенсор, обнаружитель), почти всегда черный (цвет зависит от предпочтений производителя), размером в несколько миллиметров. Автомобильные изделия имеют сравнительно большой пластиковый защитный короб, «фишку» с кабелем с разъемом подключения.

Датчик Холла

Сенсор фаз осуществляет мониторинг магнитных полей, их параметров (напряженности), при этом выдает заданные алгоритмы работы (смыкание контактов и пр.).

Датчик Холла

Рассматриваемым сенсорам присвоили наименование от фамилии ученого Холла, открывшего, что разность потенциалов (холловского напряжения) возникает, если в поле помещают объекты с постоянными токами.

Датчик Холла

Автомобильный сенсор тока находится в трамблере — узле для подключения свечей, он скрыт пластиковой фишкой с тремя проводами и разъемом под них. На иных приборах он может размещаться где угодно. Обычно на печатных платах — это крошечная черная коробочка стандартно на 3, реже — на 4 ножках. Линейные Hall sensor напоминают микросхему. Изделие также определяют по маркировке, обозначения есть в справочниках радиодеталей, (распространенные S41, 41F, U18, 3144, 44E, 49E).

Датчик Холла

При токовом течении в одном направлении электроны отклоняются в проводниках, размещенных перпендикулярно к полю. Участки их имеют неравномерную плотность частиц, это и есть разность потенциалов, фиксируемая датчиком Холла. Становится возможным анализ напряжения под прямым углом к току.

Датчик Холла

Есть также Hall effect sensor упрощенный как, например, в смартфонах: только с функцией подтверждения наличия магнитных явлений, напряженность не анализируется. На базе узла, включающего датчик и магнитомер, телефон снабжается опцией компаса.

Датчик Холла

Как функционирует

Принцип работы, использования датчика Холла:

  • Электроны при прохождении тока движутся по сенсору прямолинейно.
  • При воздействии поля частицы с зарядом отклоняются силой Лоренца по изогнутой траектории.
  • Отрицательно заряженные элементы, они же электроны, притягиваются на 1 сторону Hall sensor, а плюсовые (дырки) — к иной.
  • Описанное накопление по разным сегментам создает разное напряжение, это и есть разность потенциалов. Пропорциональность возникшего напряжения к электротоку и напряженности поля прямая. Эти окончательные явления и отслеживаются сенсором, принцип используется для определения положения подконтрольных им обслуживаемых объектов.

Датчик Холла

Где применяются

Датчики фаз начали устанавливаться в конструкции около 75 лет после их изобретения, когда появились доступные технологии создания полупроводниковых пленочных материалов.

Читайте также:  Условия измерения тока в электрических цепях

Характерные области применение датчиков Холла:

  • первая область, где началось использование — машиностроение, для замеров углов распредвалов, коленвалов, фиксации искрения на узлах зажигания;
  • переключатели (бесконтактного типа), анализаторы уровня веществ, скорости вращения лопастей, приспособления дистанционного обнаружения токов;
  • сканирование магнитных обозначений;
  • как замена герконам (автоматические выключатели, смыкающие контакты посредством магнита). В этой сфере описываемые устройства наиболее распространенные из-за многочисленности приборов: микроэлектроника, техника от наушников до манипуляторов, клавиатур, в лифтах, охранном оснащении (двери, запорные элементы).

В смартфоне

Датчик холла в смартфоне применяются для таких целей:

  • как часть компаса, магнитомера;
  • для мониторинга закрытия/открытия чехла с магнитной защелкой отслеживанием ослабления/повышения поля;

Датчик Холла

Опишем, для чего нужен датчик холла в смартфоне на обложке. При отдалении магнита с обнаружителя идет импульс на активацию табло, когда ближе — на отключение. Разновидность таких чехлов — отдельный вид изделия, именуемый обычно Smart Case. Есть и дополнительные функции, принцип действия их такой: если применяется обложка без окошек около дисплея, то посредством обнаружителя отключается экран, когда он закрыт, при открытии — автоматическая активация. При наличии окошек инициируется переключение содержимого на табло. На видимой области — часы и пр., на всем дисплее — вся информация.

Датчик Холла

Не все смартфоны имею описанное усовершенствование, а также не всегда производители указывают его в перечне опций, поэтому нужно уточнять этот параметр. Но если в рекомендуемых аксессуарах есть отметка о таковых подходящих из категории Smart Case, то данная опция присутствует.

Датчик Холла

Типы датчиков Холла

Разновидности рассмотрим для удобства таблицей:

Таблица датчики ХоллаДатчик Холла

Где и зачем используются аналоговые приборы:

  • в ABS (антиблокировочных тормозных приспособлениях);
  • управление мотором (защита, индикация);
  • приборы обнаружения питания, вибрации, черных металлов в детекторах;
  • мониторинг движения (приближения/отдаления, например, при парковке);
  • замеры параметров потока веществ, конструкций;
  • при регулировке напряжения;
  • датчики фаз, находящиеся на токоизмерительных клещах (Tong Testers), участвуют в замерах.

Датчик Холла

  • датчик Холла отвечает в автомобиле за мониторинг положения коленвалов для угла зажигания свечей, клапанов;
  • в оптике контролирует положение объектива;
  • определение размещения сидений в машине, состояния ремней и подушек безопасности;
  • беспроводная связь, мобильные компьютеры (смартфоны, планшеты, ноутбуки);
  • в приборах для определения давления;
  • сенсоры в системе «парктроник», подобные устройства для фиксации приближения/отдаления;
  • для анализа параметров потока.

Достоинства и недостатки

Плюсы:

  • универсальность (одновременно определяют положение, направление и так далее);
  • износостойкость. Нет движущихся узлов, это твердотельные прочные устройства, что обеспечивает чрезвычайную долговечность;
  • почти полная независимость от необходимости обслуживания;
  • датчик тока на эффекте Холла работает при вибрациях, в пыльных, влажных, агрессивных условиях, при высоких температурах.

Минусы:

  • у стандартных приборов максимум расстояния до замеряемого тока около 10 см. Но все зависит от магнита: если он мощный и создает широкое поле, то дистанция увеличивается;
  • характерная «болезнь» — точность, поскольку есть зависимость от магнитного поля, и другие внешние подобные явления могут вносить искажения. Это же касается высоких температур, так как они меняют сопротивление проводников, соответственно, и подвижность носителей заряда, но тут страдает чувствительность. Впрочем, такое встречается редко или влияние ничтожное, в целом не особо влияет на работу.

Датчик Холла

В автомобилях

На транспорт датчики Холла стали ставить с 70–80 годов прошлого столетия, когда начали внедрять электрозажигание вместо контактного. Принцип функционирования: вал мотора вращается с прохождением его крыльчатки по корпусным прорезям, что фиксирует обнаружитель, посылающий команду коммутатору, который и отпирает транзистор, подающий напряжение на элемент зажигания с обмоткой. Последний создает высокий вольтаж для свечи.

Датчик Холла

Конструкция

Коробочка, «фишка» с тремя контактами, три жилы и разъем подключения – это классическое устройство автомобильных Hall effect sensor. На разных моделях отличаются лишь мелочи. Такую конструкцию, учитывая нюансы обслуживаемых объектов, можно рассматривать как общий образец.

Датчик холла, устройство, схема:

  • «масса» (автомобильный корпус), это «–» или рабочий ноль;
  • «+», работающие исправные изделия имеют там около 6 В;
  • контакт для транспортировки импульса коммутатору.

Датчик Холла

Есть такие достоинства датчиков тока для зажиганий электронного типа:

  • нет постоянно подгорающего объемного контактного узла;
  • на свече выше 30 кВ против 15 кВ, что намного лучше;
  • сенсоры ставят на тормозные, антиблокировочные системы, тахометры, поэтому есть немаловажные дополнительные плюсы: повышается производительность ДВС, ускоряются и работают эффективнее все системы машины. Как следствие, возрастает удобство эксплуатации, безопасность.

Датчик Холла

Подключение больших электронагрузок

На выходе мощность датчика Холла очень низкая (10–20 мА), вследствие этого он напрямую контролировать высокие электронагрузки не может. Проблему решают достаточно просто: подключение делают с добавлением к устройству NPN-транзистора, через него стекает ток к выходу. Указанная деталь выступает приемником, когда она насыщенная, то активируется как переключатель. Транзистор заземляет выходной контакт, таким образом, замыкая его при повышении плотности потока выставленных значений для «вкл.».

Есть различные конфигурации транзисторного переключателя, но главное – устройством обеспечивается 2-тактный выход, позволяющий потреблять нужный ток для контроля больших нагрузок.

Датчик Холла

Поломки датчика тока

Частые поломки и признаки неисправности датчика Холла:

  • не стартует мотор, перебои с запуском;
  • нестабильные холостые;
  • при высоких оборотах дергание (частый признак), ТС глохнет.

Неисправный сенсор может замыкать на корпус, провоцируя проблемы с зажиганием.

Недостаток диагностики состоит в том, что перечисленные симптомы могут быть характерными и при поломках других узлов. Обстоятельство отчасти сглаживается методами не слишком сложными, под силу пользователям с элементарными познаниями в технике.

Датчик Холла

Проверка датчика Холла

Есть несколько вариантов, как проверить датчик Холла, как проанализировать функциональность. Выбирают самый доступный способ или подходящий под сложившиеся условия — все методы действенные

Надо знать, как датчик Холла выглядит, проверка также подразумевает, знание, как устроена распиновка.

Датчик Холла

Имитация наличия

Процедура самая быстрая, подходит, когда питание на электрозажигании есть, но искры нет.

  • С трамблера убирают 3-штекерную колодку.
  • Включают зажигание автомобиля.
  • Соединяют (замыкают кусочком проводка) контакты (клеммы) 3 и 2. Первый — это «–», второй — «+», для сигнала.
  • Двигают проводками, быстро соединяя/разъединяя их с контактами. Есть искра — датчик сломан. Высоковольтный провод держат у массы.

Датчик Холла

Проверка мультиметром

Проверка датчика холла мультиметром популярная, дает возможность определить, исправна ли сама цепь питания в изделии.

Датчик Холла

Как проверить тестером датчик холла на ВАЗ:

  1. Перевести тестер на анализ напряжения (вольтметр) с диапазоном от 0 до 15 В.
  2. Поставить четвертую передачу, домкратом колесо чуть-чуть приподнять (достаточно для прокручивания).
  3. Тестер подсоединить к сенсору, крутить колесо и следить за дисплеем.
  4. Замерить параметры на выходе: исправный экземпляр имеет их в диапазоне 0,4–11 В.

Для проверки, нет ли обрыва на цепи, ставят на тестере режим «прозвонки». Один щуп к контакту на фишке, второй — к соответствующей ножке сенсора. Данным способом проверяют только жилы кабеля, а не само внутреннее устройство сенсора. Обрыва нет — зуммер (если есть такая опция) и скачок цифр близко к нулю (0,001 и тому подобное); есть обрыв — 1.

Варианты схем проверки мультиметром и вольтметром:

Датчик Холла

Замена рабочим экземпляром

Можно поставить рабочее изделие, если есть запасное, или одолжить его. Если проблема осталась, то старый экземпляр сломан, но желательно в поломке удостовериться полностью и вставить его еще раз, предварительно почистив контакты.

Сложный метод

Данная процедура как проверить датчик Холла сложнее предыдущих, но, если есть средние познания в электротехнике применить ее просто. Суть: проверить, есть ли сопротивление.

Для реализации необходимо сделать несложный узел. Собирают схему со светодиодом, резистором (1 кОм), батарейкой «крона» (9 В). Для понимания достаточно графической схемы:

Датчик Холла машины своими руками со вспомогательным приспособлением проверяют так:

  • ножка диода снабжается сопротивлением (припаивают резистор), к нему — 2 провода, желательно подлиннее. Снимают крышку распределителя, отщелкивают трамблер, штекерную коробочку. Делают анализ электроцепи: щупы тестера (подойдет и вольтметр) — к 1 и 3 клемме, далее — зажигание. Исправность — на дисплее 10–12 В;
  • аналогично, на те же выводы подключают сооруженную конструкцию. При правильной полярности появится свет, если нет — переставляют жилы;
  • проводок на клемме 1 не беспокоим; конец с 3 кидаем на свободную 2;
  • крутим распредвал (вручную, стартером): моргание света — все в порядке, если нет — надо менять измеритель Холла.

На большинстве автомобилей датчики Холла проверяются максимально похоже, как описано.

Замена

Рассмотрим, как эталонную процедуру замены датчика холла ВАЗ. Процесс элементарный даже для начинающих автолюбителей.

Порядок как заменить датчик Холла:

  1. Снимают трамблер, демонтируют его крышку.
  2. Совмещают метки механизма газораспределения, коленвала.
  3. Демонтируют крепежи гаечным ключом. При этом рекомендовано пометить, запомнить (сфотографировать на смартфон) расположение трамблера.
  4. Фиксаторы, стопоры в корпусе также демонтируют.
  5. Вынимают вал из трамблера.
  6. Отсоединяют клеммные контакты, откручивают монтажные болты, через щель вытаскивают обнаружитель.
  7. Подключить датчик исправный — действия в обратном порядке.

Схема подключения в автомобиле как таковая отсутствует, так как датчик имеет кабель питания со штекером, то есть распиновка уже есть, а фишка снабжена «защитой от дурака», ключами (выступами), делающими невозможным неправильную установку. На коробочке обнаружителя есть отверстия под болты для посадочного места.

В других устройствах Hall effect sensor припаивается согласно расположению ножек и контактов под них на плате. Если взять «голый» датчик, впрочем, и если есть корпус, расположение контактов аналогичное. Нужную ножку для припаивания на плату определяют просто, как на нижеуказанной схеме.

Читайте также:  Электронные измерители силы тока

Ремонт

В ремонте датчиков Холла смысла нет, так как затраты на это превысят его стоимость, которая в границах 3–5$.

Датчик Холла

Если ради интереса кто-то захочет заняться починкой, то это можно попробовать сделать для автомобильных изделий, но ремонт будет касаться не самой сердцевины сенсора, а «фишки» и кабеля: часто сгорает конденсатор, его и провода можно перепаять. Причина неисправности может крыться в закисших контактах, их зачищают.

Видео по теме

Источник



Датчики Холла: принцип работы, типы, применение, как проверить

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Демонстрация эффекта Холла

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

Внешний вид цифрового датчика Холла

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Принцип устройства СБЗ

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

Схема подключения мультиметра для проверки ДХ

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Светоиндикаторный тестер для проверки ДХ

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Источник