Меню

Что такое ток удержания ток срабатывания

Что такое реле. Часть 2. Параметры

Герконовое реле РЭС-44

Приветствую, друзья!

В первой части статьи мы рассматривали, как устроено электромагнитное реле.

И видели, что оно содержит в себе обмотку с металлическим сердечником, подвижный якорь и контакты.

Мы поняли, зачем оно нужно.

Теперь мы познакомимся с реле ближе и посмотрим на

Параметры реле

Из множества параметров реле мы рассмотрим лишь некоторые, необходимые в практической деятельности. Будем использовать даташит на реле серии 833, чтобы теория была максимально приближена к практике.

Обычно в даташитах параметры реле собраны по группам. Как правило, есть параметры обмотки (Coil Data) и параметры контактов (Сontaсt Data).

Рассмотрим сначала некоторые

Параметры обмотки

Номинальное рабочее напряжение

Параметры обмотки реле

Каждая модификация отличается количеством витков.

В нашем примере эти напряжения лежат в ряду 3, 4, 5, 6, 9, 12, 24, 36 и 48 Вольт.

Это означает, что один и тот же тип реле можно использовать в широком диапазоне рабочих напряжений.

Соответственно, обмотки, рассчитанные на разные напряжения, имеют разное сопротивление (Coil Resistance), и для их управления требуется различный ток.

Из даташита видим, что, чем больше рабочее напряжение обмотки, тем больше ее сопротивление, и тем меньший ток нужен для переключения контактов.

Интересно отметить, что при разном рабочем напряжении обмотка может потреблять одинаковую мощность.

Так, в нашем случае различные модификации обмоток потребляют мощность около 0,36 Вт при работе с напряжениями 5 – 36 В и около 0,45 Вт при работе с напряжением 48 В.

Напряжение срабатывания

Следует отметить, что реле начинает срабатывать при напряжении меньше номинального.

Напряжение, при котором реле срабатывает, называется напряжением срабатывания (Pick Up Voltage). При этом напряжении якорь притягивается к сердечнику таким образом, что переключает контакты.

При внимательно рассмотрении можно увидеть: если на обмотку подать напряжение меньше напряжения срабатывания, якорь приходит в движение, но не настолько, чтобы переключить контакты.

Часто напряжение срабатывания указывают в процентах от номинального напряжения. Так, в нашем примере напряжение срабатывания составляет величину 75% от номинального рабочего напряжения.

Максимальное рабочее напряжение обмотки

Реле будет устойчиво работать и при напряжении обмотки несколько больше номинального. При этом возникают некоторый допустимый перегрев обмотки. Максимальное рабочее напряжение (Maximum Continuous Voltage) также указывается в даташите.

Параметры обмотки реле

Оно также может указываться в процентах он номинального рабочего напряжения. В нашем примере оно составляет величину 150% от номинального рабочего напряжения.

Иными словами, реле может работать в некотором диапазоне напряжений обмотки. В нашем случае реле, например, с обмоткой 5 В может работать в диапазоне от 3,75 до 7,5 В, а реле с обмоткой 12В — в диапазоне от 9 до 18 В.

Напряжение отпускания

Электромагнитное релеНапряжение отпускания (Drop Out Voltage) — это напряжение обмотки, при котором якорь, будучи ранее притянутым, отпускает.

Напряжение отпускания также может указываться в процентах от номинального рабочего напряжения.

В нашем случае оно составляет величину 10% от номинального.

Т.е. если, например, обмотка рассчитана на номинальное напряжение 5 В, то якорь отпустит при снижении напряжения на обмотке до 0,5 В и менее.

Иногда в справочных данных вместо напряжений срабатывания и отпускания указывают токи срабатывания и отпускания.

Обратите внимание: напряжение срабатывания и напряжение отпускания сильно отличаются!

Иными словами, для удержания реле во включенном состоянии требуется существенно меньше энергии, чем для перевода реле из выключенного состояния во включенное.

Для уменьшения потребляемой от источника питания энергии можно после срабатывания реле уменьшить напряжения на его обмотке до величины, большей напряжения отпускания.

Параметры контактов

Сопротивление контактов

Переходное сопротивление замкнутого контакта (Contact Resistance) обычно не превышает 100 мОм (миллиом).

Сопротивление контактов реле

Помните, мы рассматривали полевой транзистор как аналог реле?

Так вот, сопротивление канала мощного полевого транзистора может быть на порядки меньше — сотые и тысячные доли Ома.

Чем меньше сопротивление, тем меньше греется контакт (или канал полевого транзистора).

Напомним, что контакты реле покрывают специальными сплавами. В нашем случае это сплав серебра и оксида олова (AgSnO), обладающий высокой температурой плавления и устойчивостью к сварке и электрической эрозии при коммутации сильноточных и индуктивных нагрузок.

Следует отметить, что коммутация индуктивных нагрузок (что и происходит в ИБП) – это самый тяжелый режим для контактов реле. При этом между ними может возникнуть электрическая дуга, что сильно сокращает срок их службы.

Рейтинг контактов

В даташите обязательно оговаривается величина коммутируемого контактами максимального тока (Contact Rating).

Время срабатывания

Время срабатывания реле

Время срабатывания (Operate Time) — это время, за которое реле переходит из состояния «выключено» в состояние «включено». Для разных типов реле этот параметр лежит в пределах примерно от 1 до 200 миллисекунд.

Время срабатывания определяется конструкцией механической части реле — массой якоря и упругостью его пружины.

В нашем случае время срабатывания не превышает 10 мс.

Время отпускания

Время отпускания реле (Release Time) – это время, за которое оно переходит из состояния «включено» в состояние «выключено».

Графики времени срабатывания и отпускания

Обратите внимание: как правило, время отпускания (кроме специальных случаев) меньше времени срабатывания.

В нашем случае оно составляет величину не более 5 мс.

Если внимательно рассмотреть графики, приведенные в даташите, то можно увидеть, что временем срабатывания можно в некоторой степени управлять, меняя напряжение на обмотке.

Так, для напряжения 75% от номинального, время срабатывания будет иметь величину примерно 10 мс, при номинальном напряжении – около 5,5 мс, а при максимальном рабочем напряжении – около 3,5 мс.

Интересно отметить, что при этом напряжение отпускания почти не изменяется.

Ресурс контактов

В завершение упомянем о ресурсе контактов реле (Life Expectancy).

Ресурс контактов

В справочных данных могут приводиться отдельные значения для количества срабатываний контактов как механической системы (Life Expectancy Mechanical) и как электрической системы (Life Expectancy Electrical).

График ресурса контактов

В нашем случае это, соответственно, 10 000 000 и 100 000.

В общем случае, ресурс реле определяется, естественно, меньшей цифрой.

Но следует отметить, что цифра 100 000 «электрических» срабатываний приведена для максимальных токов.

Если посмотреть на график, то можно убедиться, что при коммутации малых токов эта цифра будет существенно больше.

А если превысить коммутируемые токи, то цифра будет существенно меньше :))

Читайте также:  Однофазные выпрямители переменного тока это

Реле — в целом штука весьма надежная, но нужно использовать его разумно.

Источник

Структура тиристора

date image2014-02-04
views image2381

facebook icon vkontakte icon twitter icon odnoklasniki icon

Параметры тиристоров

  1. Напряжение включения ( ) – это такое напряжение, при котором тиристор переходит в открытое состояние.
  2. Повторяющееся импульсное обратное напряжение (Uобр.max) – это напряжение, при котором наступает электрический пробой. Для большинства тиристоров Uвкл.= Uобр.max
  3. Максимально допустимый прямой, средний за период ток.
  4. Прямое падение напряжения на открытом тиристоре (Uпр.= 0,5÷1 В)
  5. Обратный максимальный ток – это ток, обусловленный движением неосновных носителей при приложении напряжения обратной полярности.
  6. Ток удержания – это анодный ток, при котором тиристор закрывается
  7. Время отключения — это время в течение которого закрывается тиристор.
  8. Предельная скорость нарастания анодного тока . Если анодный ток будет быстро нарастать, то p-n переходы будут загружаться током неравномерно, вследствие чего будет происходить местный перегрев и тепловой пробой .
  9. Предельная скорость нарастания анодного напряжения . Если предельная скорость нарастания анодного напряжения будет больше паспортной, тиристор может самопроизвольно открыться от электромагнитной помехи.
  10. Управляющий ток отпирания – это ток, который необходимо подать, чтобы тиристор открылся без «колена».
  11. Управляющее напряжение отпирания — это напряжение, которое необходимо подать, чтобы тиристор открылся без «колена».

Общим признаком для тиристоров различных типов является нелинейная ВАХ с участком отрицательного сопротивления (рис.1), что обеспечивает регенеративный процесс в приборе при переходе из его закрытого в открытое состояние. Основными типами являются диодные (динистор) и триодные тиристоры (тринистор), обозначение которых на электрических схемах показано на рис.2 а и б соответственно.

Тиристор имеет А(анод), К(катод) и две базы, к одной из которых подключается управляющий электрод. В результате получаем управление по аноду или по катоду. Для понимания работы тиристора можно воспользоваться 2-хтранзисторной моделью работы тиристора. В которой тиристор представлен как соединение 2-х транзисторов с разными типами проводимостей. Коллектор каждого из этих транзисторов соединен с базой другого.

Диоды предназначены для включения катод – анод, а тиристор для этого не предназначен.

VT1 и VT2 находятся в активном режиме, т.е. эмиттерные переходы смещены в прямом направлении или находятся в приоткрытом состоянии, коллекторные – закрыты.

При увеличении Uак увеличивается ток утечки запертого коллекторного перехода.

При достижении токовой утечки некоторой величины, коэффициент по току начинает превышать единицу, т.е. ток утечки VT1 попадает в базу VT2, усиливается VT2 и попадает в базу VT1, т.е. возникает лавинообразный процесс отпирания тиристора. Ток анода возрастает.

, где — статический коэффициент передачи тока эмиттера, — обратный ток перехода коллектор-база.

Наличие управляющего электрода позволяет извне подавать ток, необходимый для открывания тиристоров.

На ВАХ тиристора можно выделить несколько областей с соответствующими режимами работы:

Режим 1 – (0-1) — режим прямого запирания — напряжение на аноде положительно относительно катода, ток незначителен.

Режим 2 – (1-2) — участок характеристики с отрицательным дифференциальным сопротивлением. Он начинается в т.ВАХ, где , напряжение в этой точке называется напряжением включения , а ток через прибор – током включения .

Режим 3 – (2-3) – режим прямой проводимости. Он начинается в т.2. Напряжение в этой точке называется напряжением удержания , а ток-током удержания . Это минимальные напряжение и ток, необходимые для поддержания тиристора в открытом состоянии.

Режим 4 – (0-4) – режим обратного запирания, когда напряжение анода относительно катода отрицательно.

Режим 5 – (4-5) – режим обратного пробоя.

Для запирания необходимо уменьшить ток и напряжение, пока коэффициент усиления не станет меньше 1.

Ток удержания –минимальный ток анода, при котором тиристор остается еще включенным.

При подаче на управляющий электрод тиристора некоторого напряжения и тока мы можем включить его при меньшем напряжении . Увеличивая значение управляющего тока, мы можем добиться такого состояния, когда тиристор будет открыт управляющим импульсом при любом напряжении анод-катод (напряжение и ток спрямления).

Подавая ток в базу, мы достигаем ток, при котором , при меньшем .

Для запирания тиристора нужно уменьшить ток до величины, меньшей тока удержания.

  1. Разорвать ток (1)
  2. Закоротить (2)
  3. Поставить параллельно тиристору катушку индуктивности (3)

  1. Закрыть тиристор другим тиристором

При включении VS1 через нагрузку протекает ток. Конденсатор заряжается в указанной полярности. Когда необходимо выключить VS1 отпирается VS2 дополнительным импульсом, и разрядный ток конденсатора, протекая через VS1, запирает его. После снятия управляющего напряжения с VS2, он запирается, т.к. R выбран такой величины, чтобы анодный ток VS2 был гораздо меньше тока удержания.

По способу управления резисторы бывают однооперационными – выключение которых осуществляется снижением анодного тока ниже тока удержания или за счет включения анодного тока противоположного направления, и двухоперационными, которые включаются подачей на УЭ положительного напряжения, а выключается подачей на этот электрод импульса отрицательной полярности. Величина управляющего тока включения не превышает 100 мА, а для выключения запираемого тиристора необходимо отрицательный импульс токоуправления, сравнимого по величине с анодным током, что наряду со сложностью их изготовления, ограничила области их применения.

Основными параметрами тиристоров являются

напряжение и ток включения;

ток выключения (удержания);

максимально допустимый ток в открытом состоянии;

время задержки включения и выключения;

класс по напряжению, под которым понимается предельное эксплуатационное напряжение в сотнях вольт, не вызывающее самопроизвольного включения тиристора или разрушения его структуры.

Например:

2Y206A – тиристор p-n-p-n-запираемый. при токе

КУ108В – тиристор незапираемый.

Для запирания незапираемого тиристора недостаточно уменьшить либо инвертировать напряжение на управляющем электроде. Необходимо также либо снизить до нуля, либо инвертировать напряжение на аноде, или, по крайней мере, уменьшить ток анода ниже тока удержания (до каких величин в справочниках не указывается). Запираемый тиристор можно закрыть подачей только на управляющий электрод запираемого тока, сравнимого по величине только с током анода.

Есть Iауд (ток анода удержания), при котором тиристор удерживается открытым (минимальный ток). В схеме с объединенными катодами можно подавать управляющий сигнал от одного устройства управления на оба электрода, разделенные диодами. При этом будет открываться тиристор, смещенный в прямом направлении.

Фазовое управление тиристора:

Фиксируется момент прохождения через ноль переменного анодного напряжения и через время, регулируемое относительно этого момента, на управляющий электрод подается управляющий импульс. Изменяя это время, мы изменяем средний ток через нагрузку от 0 до максимума. Т.к. тиристор либо открыт, либо закрыт, рассеивание мощности не происходит и КПД стремится к 1.

Читайте также:  Тока бока все открыто новогодняя последняя версия

Использование тиристоров на постоянном токе:

Транзистор боится перегрузок
R1
R2
VD1
VD2
C
+
С
L

Подачей напряжения на УЭ VD1 отпираем его. Конденсатор заряжается в указанной полярности. Затем подаем напряжение на УЭ VD2, он отпирается, и напряжение на конденсаторе запирает VD1.

Ток конденсатора должен быть больше тока удержания, чтобы тиристор закрылся. VD2 запирается за счет выбора R2 такой величины, чтобы ток анода VD2 был меньше тока удержания. Длительность формируемого импульса определяется Rн, L, C.

Источник

Терминология

Терминология слаботочных реле основана на терминах и определениях, установленных в ГОСТ 16022-83 «Реле электрические. Термины и определения», ГОСТ 14312-79 «Контакты электрические. Термины и определения», а также ГОСТ 16121-86 «Реле слаботочные электромагнитные. ОТУ» и ГОСТ 16120-86 «Реле слаботочные времени. ОТУ».

Электрическое реле (ГОСТ 16022) – аппарат, предназначенный производить скачкообразные изменения в выходных цепях при заданных значениях электрических воздействующих величин.

Воздействующая величина электрического реле (ГОСТ 16022) – электрическая величина, которая одна или в сочетании с другими электрическими величинами должна быть приложена к электрическому реле в заданных условиях для достижения ожидаемого функционирования.

Логическое электрическое реле (ГОСТ 16022) – электрическое реле, предназначенное для срабатывания или возврата при изменении входной воздействующей величины, не нормируемой в отношении точности.

Электрическое реле времени (ГОСТ 16022) – логическое электрическое реле с нормируемой выдержкой времени.

Электрическое реле с нормируемым временем (ГОСТ 16022) – электрическое реле, у которого нормируется в отношении точности одно или несколько времен, характеризующих его.

Электрическое реле с ненормируемым временем (ГОСТ 16022) – электрическое реле, у которого время не нормируется в отношении точности.

Измерительное электрическое реле (ГОСТ 16022) – электрическое реле, предназначенное для срабатывания с определенной точностью при заданном значении или значениях характеристической величины.

Электромеханическое реле (ГОСТ 16022) – электрическое реле, работа которого основана на использовании относительного перемещения его механических элементов под воздействием электрического тока, протекающего по входным цепям.

Электромагнитное реле (ГОСТ 16022) – электромеханическое реле, работа которого основана на воздействии магнитного поля неподвижной обмотки на подвижный ферромагнитный элемент.

Герконовое реле (ГОСТ 16022) – электромагнитное реле с герметизированным магнитоуправляемым контактом.

Магнитоэлектрическое реле (ГОСТ 16022) – электромеханическое реле, работа которого основана на взаимодействии магнитных полей неподвижного постоянного магнита и возбуждаемой током подвижной обмотки.

Индукционное реле (ГОСТ 16022) – электромеханическое реле, работа которого основана на взаимодействии переменных магнитных полей неподвижных обмоток с токами, индуктированными этими полями в подвижном элементе.

Электродинамическое реле (ГОСТ 16022) – электромеханическое реле, работа которого основана на взаимодействии магнитных полей подвижной и неподвижной обмоток, возбуждаемых токами, подведенными извне.

Ферродинамическое реле (ГОСТ 16022) – электродинамическое реле, в котором взаимодействие магнитных полей усиливается наличием ферромагнитных сердечников.

Статическое электрическое реле (ГОСТ 16022) – электрическое реле, принцип работы которого не связан с использованием относительного перемещения его механических элементов.

Ферромагнитное реле (ГОСТ 16022) – статическое электрическое реле, работа которого основана на использовании нелинейной характеристики ферромагнитных материалов.

Статическое электрическое реле с выходным контактом (ГОСТ16022) – статическое электрическое реле, имеющее контакт хотя бы в одной выходной цепи.

Статическое электрическое реле без выходного контакта (ГОСТ 16022).

Полупроводниковое реле (ГОСТ 16022) – статическое электрическое реле, работа которого основана на использовании полупроводниковых приборов.

Электротепловое реле (ГОСТ 16022) – электрическое реле, работа которого основана на тепловом действии электрического тока.

Поляризованное реле (ГОСТ 16022) – электрическое реле постоянного тока, изменение состояния которого зависит от полярности его входной воздействующей величины.

Неполяризованное реле (ГОСТ 16022) – электрическое реле постоянного тока, изменение состояния которого не зависит от полярности его входной воздействующей величины.

Одностабильное реле (ГОСТ 16022) — электрическое реле, которое, изменив свое состояние под воздействием входной воздействующей или характеристической величины, возвращается в начальное состояние, когда устраняют это воздействие.

Двустабильное реле (ГОСТ 16022) – электрическое реле, которое, изменив свое состояние под воздействием входной воздействующей или характеристической величины, после устранения воздействия не изменяет своего состояния до приложения другого необходимого воздействия.

Низкочастотное реле – реле, предназначенное для коммутации постоянного и переменного тока частотой до I МГц.

Высокочастотное реле – реле, предназначенное для коммутации постоянного и переменного тока частотой свыше I МГц.

Переключающий контакт (ГОСТ 14312) – контакт электрической цепи, который размыкает одну электрическую цепь и замыкает другую при заданном действии устройства.

Неперекрывающий контакт (ГОСТ 14312) – переключающий контакт электрической цепи, размыкающий одну электрическую цепь до замыка­ния следующей цепи.

Перекрывающий контакт (ГОСТ 14312) – переключающий контакт электрической цепи, не размыкающий одну электрическую цепь до замыкания следующей цепи.

Замыкающий контакт (ГОСТ 14312) – контакт электрической цепи, разомкнутый в начальном положении реле и замыкающийся при переходе реле в конечное положение.

Размыкающий контакт (ГОСТ 14312) – контакт электрической цепи, замкнутый в начальном положении реле и размыкающийся при пе­реходе реле в конечное положение.

Сопротивление контакта электрической цепи (ГОСТ 14312) – электрическое сопротивление, состоящее из сопротивлений контакт деталей и переходного сопротивления контакта электрической цепи.

Падение напряжения на контактах – напряжение на выводах замкнутых контактов при наличии в их цепи тока.

Максимальный коммутируемый ток – характеристика режима применения, в пределах которого изготовитель обеспечивает наработку реле в условиях эксплуатации, установленную в ТУ, но не менее 100 000 коммутационных циклов.

Коммутационный цикл реле – последовательный переход реле через все состояния, включая возврат в исходное состояние.

Наработка реле – число коммутационных циклов и (или) время пребывания реле под напряжением (током) в заданных режимах и условиях.

Рабочее напряжение (ток) – значение напряжения (тока) на обмот­ке (в цепи питания), при котором гарантируется работоспособность реле в эксплуатационных условиях.

Срабатывание реле (ГОСТ 16022) – выполнение электрическим реле предназначенной функции.

Время срабатывания реле – интервал времени с момента подачи рабочего напряжения на обмотку (в цепь питания) до первого замыкания любого замыкающего или размыкания любого размыкающего контакта, или до первого замыкания разомкнутой цепи любого переключающего контакта при срабатывании реле или до включения или выключения выходной цепи реле.

Читайте также:  Тест по электротехнике постоянный ток ответы

Напряжение (ток) срабатывания реле – минимальное значение напряжения (тока) на обмотке, при котором происходит срабатывание реле.

Возврат реле (ГОСТ 16022) – переход электрического реле из состояния завершенного срабатывания в исходное.

Время возврата реле – интервал времени с момента снятия нап­ряжения с обмотки (цепи питания) до первого замыкания любого размыкающего или размыкания любого замыкающего контакта, или до первого замыкания разомкнутой цепи любого переключающего контакта при возврате реле или до выключения или включения выходной цепи реле.

Напряжение (ток) возврата – максимальное значение напряжения (тока) на обмотке (в цепи питания), при котором происходит возврат реле.

Удержание реле – фиксированное состояние реле, в которое оно приведено после срабатывания.

Напряжение (ток) удержания – минимальное значение напряжения (тока) на обмотке, при котором реле остается в состоянии срабатывания.

Выдержка времени реле (ГОСТ 16022) – интервал времени с момента подачи или съема возбуждения электрического реле до мгновения выполнения этим реле предназначенной функции, являющейся нормируемой характеристикой времени.

Время восстановления реле – интервал времени между снятием и повторной подачей напряжения в цепь питания, при котором повторное время срабатывания будет находиться в пределах допусков, установленных в ТУ.

Разновременность срабатывания (возврата) контактов (ГОСТ 16022) – разность между максимальным значением времени срабатывания (возврата) более медленного контакта реле и минимальным значением времени срабатывания (возврата) более быстрого контакта.

Время стабилизации контакта – интервал времени с момента первого замыкания контакта до установления заданного статического контактного сопротивления.

Дребезг контакта (ГОСТ 14312) – процесс многократного са­мопроизвольного размыкания и замыкания контактов электрической цепи по причинам, не предусмотренным заданным действием реле.

Время дребезга контакта – промежуток времени с момента перво­го замыкания до начала последнего замыкания контакта при его замыкании и с момента первого размыкания до последнего размыкания контакта при его размыкании.

Сбой контактирования – единичное самоустраняющееся при последующей коммутации несостоявшееся соединение коммутируемой цепи при замыкании или несостоявшийся разрыв ее при размыкании.

©2021 АО НПК «Северная заря».
Россия, Санкт-Петербург, Кантемировская ул. 7.
Телефон: +7 (812) 677-35-00.

Источник



Б) Ток срабатывания и ток возврата реле

Основные типы электромагнитных реле

На электромагнитном принципе выполняются реле трех основных типов: реле с втягивающимся якорем, реле с поворотным якорем и реле с поперечным движением якоря.

Реле с втягивающимся якорем (рис. 3-1) состоит из неподвижного сердечника (полюса) 1, катушки (обмотки)7, стального якоря 2, подвижного контакта 4, укрепленного на якоре с помощью изоляционной планки, неподвижных контактов 3, упора 6 и противодействующей пружины 5.

При отсутствии тока в реле якорь под влиянием пружины и собственного веса находится в нижнем положении, на упоре. При подаче тока в катушку реле возникает магнитный поток, который намагничивает сердечник 1 и якорь 2. В результате этого якорь притягивается к сердечнику и укрепленный на нем контакт 4 замыкает контакты 3.

С помощью электромагнитной системы такого типа выполняются реле прямого действия (см. рис. 3-7—3-11), отключающие и включающие электромагниты приводов выключателей и другие аппараты.

Реле с поворотным якорем (рис. 3-2, а) и реле с поперечным движением якоря (рис. 3-2, б) состоят из стального сердечника (магнитопровода) 1, катушки (обмотки) 7, стального якоря 2, подвижного контакта 4, укрепленного на якоре (рис. 3-2, а) или

на оси якоря (рис. 3-2, б), неподвижных контактов 3, упора 6 и противодействующей пружины 5. Действие этих реле аналогично действию рассмотренного выше реле с втягивающимся якорем.

Сила притяжения, воздействующая на якорь электромагнитных реле, определяется выражением

Из (3-1) следует, что сила притяжения FЭ прямо пропорциональна произведению квадрата тока, проходящего по обмотке реле I 2 , на квадрат числа витков и обратно пропорциональна квадрату расстояния от якоря до сердечника l 2 ( — коэффициент пропорциональности, учитывающий магнитные свойства стали и особенности конструктивного выполнения реле).

б) Ток срабатывания и ток возврата реле

Момент притяжения якоря реле к неподвижному сердечнику называется моментом срабатывания реле, а наименьший ток, при котором оно срабатывает, называется током срабатывания реле и обозначается IC.P.

Из приведенного определения тока срабатывания реле следует, что пограничное условие срабатывания реле наступает, когда электромагнитная сила FЭ, с которой якорь притягивается к неподвижному сердечнику, становится равной противодействующей механической силе FM, складывающейсяиз силы пружины и веса якоря, т. е. когда

Подставляя это условие в выражение (3-1), получаем:

Если после срабатывания реле постепенно уменьшать ток в его обмотке, то электромагнитная сила будет уменьшаться, и, когда она станет меньше противодействующей механической силы, якорь реле вернется в исходное положение. Момент возвращения якоря в исходное положение называется моментом возврата реле, а наибольший ток, при котором происходит возврат реле, называется т о-ком возврата реле и обозначается IB.P.

Отношение тока возврата к току срабатывания называется коэффициентом возврата реле:

Выше были рассмотрены электромагнитные реле, которые срабатывают при увеличении тока, проходящего в обмотке реле. Такие реле называются реле увеличения тока (напряжения) или реле тока (напряжения) максимальные. У реле максимальных ток (напряжение) срабатывания больше тока (напряжения) возврата, поэтому коэффициент возврата у этих реле всегда меньше единицы.

Электромагнитные реле этих же конструкций могут работать с нормально притянутым якорем. В этих случаях обмотка реле постоянно обтекается током такой величины, при которой FЭпревышает FM и исходным рабочим положением реле является положение, когда якорь реле притянут к сердечнику и связанный с ним контакт 4 (рис. 3-1, 3-2) замыкает неподвижные контакты 3.

Реле срабатывает, когда ток в обмотке уменьшается до величины, при которой FЭ становится меньше FM. Наибольшая величина этого тока называется током срабатывания. Реле возвращается в исходное положение, когда ток в обмотке опять возрастет и FЭ превысит FM. Наименьшая величина этого тока называется током возврата реле.

Таким образом, рассмотренные реле срабатывают при уменьшении тока в обмотках и поэтому называются реле уменьшения тока (напряжения) или реле тока (напряжения) минимальные.

У реле минимальных ток срабатывания меньше тока возврата, поэтому коэффициент возврата у этих реле всегда больше единицы.

Источник