Меню

Диапазон коммутируемых напряжений токов максимальная коммутируемая мощность

Большая Энциклопедия Нефти и Газа

Коммутируемый ток

К недостаткам герконов можно отнести малую величину коммутируемого тока ( не более 1 А), небольшую перегрузочную способность контактов, недостаточную вябро — и удароустойчивость, дребезг при размыкании. Однако герконы широко используют в приборах холодильной автоматики: реле уровня, реле протока, реле контроля смазки, поплавковых регуляторах уровня и др. Автоматические приборы на базе герконов значительно легче, дешевле и долговечнее аналогичных приборов с открытыми контактами. [46]

В технической документации на реле указывается диапазон коммутируемых токов и напряжений, в пределах которого гарантируется определенное число коммутаций. [47]

В каталогах [67] контакторы сгруппированы по роду коммутируемого тока . Выбор их производится, исходя из напряжения в цепи главных контактов, необходимого количества и вида главных и блок-контактов, а также величины и длительности протекания тока нагрузки. [49]

Емкость и индуктивность цепи контактов определяют диапазон частот коммутируемого тока . Величина емкости характеризует степень шунтирования нагрузки и паразитных связей между коммутируемыми и соседними цепями. [50]

Коммутационная способность контактов реле характеризуется допустимой мощностью и диапазонами коммутируемых токов и напряжений в пределах этой мощности. [51]

На рис. 3 — 8 изображены расчетные кривые изменения коммутируемого тока при разных условиях. [53]

Для выключателей в качестве величины X, может быть принят коммутируемый ток , для трансформаторов — температура изоляции, для электродвигателей — пусковой ток. Очевидно, что такие величины обычно характеризуют все группы факторов и при таком подходе при определении фактического ресурса электрооборудования можно учитывать только их. [54]

С увеличением размеров герконов вследствие увеличения площади контактирования контакт-деталей возрастает коммутируемый ток , а вследствие увеличения длины рабочего зазора возрастает коммутируемое напряжение. В зависимости от размеров герконов рабочий зазор между контакт-деталями принимается в пределах 0 05 — 0 3 мм, а перекрытие концов контакт-деталей — в пределах 0 2 — 2 мм. Габаритные размеры герконов определяют размеры и массу устройства автоматики. [56]

Форма контактов рассматриваемых узлов должна выбираться, исходя из величины коммутируемого тока , напряжения, а также возможности обеспечения необходимой точности сопряжения контактных поверхностей или допустимом износе. Форма контактных деталей из благородных металлов прежде всего должна быть такой, чтобы при обеспечении качественного соединения с упругой деталью она позволяла использовать минимальное количество металла и полностью исключать его потери. На рис. 11.4 показаны схемы сопряжения контактных пар при различных формах поверхностей. [58]

В камерах с широкой продольной щелью дуга и ее пламя при больших коммутируемых токах выходят за пределы камеры на значительные расстояния. Это вызывает увеличение размеров комплектных устройств. [59]

Сигналы связи с контурами регулирования, сигналы токовых ключей с параметрами: коммутируемый ток не более 100 ма, коммутируемое напряжение не более — 40 в, остаточное измерение на ключе не более — 2 7 в, частота коммутации, не более 2 кгц, неуправляемый ток через ключ не более 0 8 ма. [60]

Источник

Допустимый ток контактов реле

Дата23 ноября 2016 Авторk-igor

Допустимый ток контактов реле

В наших проектах можно встретить реле различного назначения. Начинающие проектировщики могут допустить очень грубую ошибку при проектировании схем с использованием реле. Неправильное использование реле в лучшем случае приведет лишь поломке самого реле…

А если у вас будет какой-то непрерывный технологический процесс, представляете, какой возможен ущерб?

В своих схемах я стараюсь не использовать контакты реле для коммутации силовой нагрузки. Но, если мы не превышаем допустимую нагрузку, то почему бы нам не коммутировать контактами реле силовую нагрузку?

На мой взгляд, силовая нагрузка – понятие достаточно условное. Скажем, к нагрузкам до 500 Вт его можно не применять (ИМХО).

Например, управлять контактором КТИ-7630 (на 630А) не так просто, поскольку при срабатывании он потребляет 1650ВА и здесь следует задуматься о допустимом токе (мощности) контактов, которыми вы управляете контактором.

В каталоге «F&F» имеется таблица максимальной мощности в зависимости от типа нагрузки и номинального тока контактов реле:

Максимальная мощность контактов реле

Максимальная мощность контактов реле

На столбец (АС1) я бы все-таки не обращал внимание, т.к. цифры в нем меня смущают. Вот что мне ответили по этому поводу:

В общем, если вы видите контакты с номинальным током 16А, это совсем не значит, что на эти контакты можно подключать нагрузку с таким током.

Где-то я читал такое правило, что номинальный ток контактов нужно делить на 3, т.е. для реле с током 16А, допустимый ток будет 5А или 1 кВт. Как видим из таблицы, в целом это правило соответствует действительности.

Источник

Устройство, схема и подключение промежуточного реле. Часть 2

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.

Промежуточные реле

5. Основные параметры электромагнитных реле.

Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.

Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.

1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.

Данные сопротивления обмоток реле

Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:

2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.

Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.

3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.

Ток напряжение отпускания

4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.

Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.

Рабочее напряжение реле

5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).

Данные коммутации контактов реле

Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.

Читайте также:  Расчет тока 10кв линии

Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.

6. Подключение промежуточных реле.

Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.

Разберем подключение реле на примере простых схем.

6.1. Схема с нормально разомкнутым контактом.

Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.

Работа нормально-разомкнутого контакта

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.

Работа нормально-разомкнутого контакта

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.2. Схема с нормально замкнутым контактом.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.

Работа нормально-замкнутого контакта реле

При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.

Работа нормально-замкнутого контакта реле

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.

В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.

Работа перекидного контакта реле

При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.

Работа перекидного контакта реле

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.

Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.

6.4. Схема с гальванической развязкой.

На схеме показаны две цепи – управляющая и исполнительная (силовая):

управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;

исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.

Гальваническая развязка катушки и контактов реле

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.

6.5. Схема технологической сигнализации.

А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.

Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.

Рассмотрим упрощенную схему с одним контролируемым параметром.

Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.

При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.

Схема технологической сигнализации

Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.

Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.

И в дополнение к статье видеоролик о промежуточных реле.

Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Источник



Базовый международный стандарт на электромеханические реле (IEC 61810-1 Ed. 3): критический обзор

Стандарты Международной Электротехнической Комиссии (МЭК) являются важнейшими документами, регулирующими международную техническую политику, а также техническую политику отдельных стран, национальные стандарты которых написаны на основе стандартов МЭК. Поэтому любые неточности, недомолвки или нечеткие формулировки в стандартах МЭК могут привести к очень серьезным последствиям. Но так ли уж идеальны действующие сегодня стандарты? Попробуем разобраться в этом вопросе на основе критического анализа одного из базовых стандартов в области электрических реле: IEC 61810-1 (Ed. 3): Electromechanical elementary relays — Part 1: general requirements.

Электромеханические реле являются важнейшими элементами систем автоматики и выпускаются во всем мире миллионами штук. Поэтому к базовому стандарту на электромеханические реле должны предъявляться высокие требования. Что же мы видим на самом деле?

1. Термины и определения

В п. 3.7.1. раздела «Термины и Определения» дается определение двум терминам: «функциональная изоляция» и «базовая изоляция», которые далее используются в стандарте. Согласно IEC 61810-1 «функциональной» является изоляция, необходимая только для правильного функционирования реле, а «базовой» является изоляция, предотвращающая поражение электрическим током. В качестве разъяснения разницы между этими двумя видами изоляции, в примечаниях к таблицам 10 и 11 приводится пример «функциональной» изоляции как изоляции между контактами реле, необходимой, как утверждается в стандарте, только для правильного функционирования реле. С этим утверждением нельзя согласиться. Совершенно очевидно, что одна и та же изоляция может быть и «базовой» и «функциональной» в зависимости от конкретного применения реле. Так, например, если контакты реле производят переключение в электрических цепях, недоступных для прикосновения человеком, то изоляция между контактами реле действительно является чисто функциональной, но если контакты реле отключают от источника напряжения части электроустановки к которым имеется доступ человека (прямой или опосредованный, через другие электрические цепи) то это уже базовая изоляция. С другой стороны, реле часто используется для гальванической развязки разнопотенциальных цепей аппаратуры, при этом изоляция между катушкой и контактами реле не имеет никакого отношения к безопасности человека и является чисто функциональной, тогда как в других случаях применения реле она является именно базовой. Таким образом, получается, что определить вид изоляции реле в общем случае, то есть без привязки к конкретному его применению, нельзя и устанавливать различные требования к электрической прочности изоляции реле только по этим заранее детерминированным определениям нельзя. Но тогда зачем вообще нужны эти термины?

Читайте также:  Коврик с током для ног

2. Номинальные значения токов и напряжений

В разделе 5.1 и 5.7 стандарта IEC 61810-1 приводятся ряды номинальных значений постоянного напряжения, для катушки: 1,5; 3; 4,5; 5; 9; 12; 24; 28; 48; 60; 110; 125; 220; 250; 440; 500 Вольт, постоянного тока; 6; 12; 24; 48; 100/v3; 110/v3; 120/v3; 100; 110; 115; 120; 127; 200; 230; 277; 400; 480; 500 Вольт переменного тока; и, соответственно, для контактов реле, работающих на активную нагрузку: 4,5; 5; 12; 24; 36; 42; 48; 110; 125; 230; 250; 440; 500 Вольт постоянного или переменного тока.

В таблицах 16 и 17, соответственно, приведены совершенно иные ряды номинальных значений напряжений: 10; 12,5; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 320; 400; 500; 630 и 12,5; 24; 25; 30; 32; 42; 48; 50; 60; 63; 100; 110; 120; 125; 127; 150; 160; 200; 208; 220; 230; 240; 250; 277; 300; 320; 380; 400; 440; 480; 500; 575; 600; 630.

Во-первых, для корректного обозначения величины переменного тока принято указывать о каком именно значении идет речь (амплитудном, среднем, действующем), что в стандарте не сделано.

Во-вторых, вызывает недоумение существенные различия в рядах номинальных значений напряжений. По нашему мнению, это совершенно неоправданно и не логично, поскольку, как правило, и контакты и катушки реле включаются в электрические цепи одной и той же аппаратуры, имеющей определенный ряд номинальных значений напряжений. Почему эти ряды должны быть разными для цепей контактов, цепей катушек и внутренних источников напряжения одной и той же аппаратуры, не понятно.

В-третьих, ряды токов и напряжений для контактов реле в данном стандарте не соответствуют классам нагрузки контактов, принятом в стандарте IEC 61810-7 Electromechanical elementary relays — Part 7: Test and measurement procedures.

В разделе 5.7 в качестве минимального значение напряжения нагрузки для контактов реле принято напряжение 4,5 В, а минимальный ток 0,1 А. В то же время, хорошо известно, что в электронных цепях используются напряжения гораздо ниже 4,5 В (0,5-1 В), а токи гораздо меньше 0,1 А (0,005- 0,01 А) и миниатюрные электромеханические реле с раздвоенными (bifurcate) позолоченными контактами широко используются для переключений в этих цепях. Что же делать с такими реле, которые реально присутствуют на рынке, широко используются, но не соответствуют стандарту IEC 61810-1? С другой стороны, ток в 100 А, указанный как максимальное значение в раду номинальных токов в цепи контактов, более характерен для мощных контакторов, чем для реле.

Максимальные значения номинальных напряжений в ряду 400-440 В, по нашему мнению, не корректны, так как не отражают существующую реальность. С одной стороны, существуют стандартные напряжения 660 В и 1140 В, широко используемые в промышленности, с другой стороны, многие компании производят малогабаритные открытые электромеханические реле на напряжения 4-5 кВ (Hehgsler-Ka Co., Italiana Rele, SPS Electronic GmbH, Magnecraft), а также газонаполненные и вакуумные реле на напряжения 70 кВ и выше (Kilovac, Gigavac, Jennings Technologies). Многими компаниями выпускаются и высоковольтные герконовые реле на напряжения 10-20 кВ [1]. Разработаны слаботочные реле с изоляции между катушкой и контактами до 120 кВ [2]. Такие реле широко используются в мощной электрофизической, радиоэлектронной и медицинской аппаратуре, испытательных установках и пр. Получается, что на рынке реально присутствует большая группа электромеханических реле, фактически не охваченная существующим общим стандартом, несмотря на то, что объектом приложения этого стандарта являются, как утверждается в первом разделе стандарта, все электромеханические реле без разделения их на реле низкого и высокого напряжения. Вполне логичным выходом из такой ситуации было бы изменение названия этого стандарта (например, на: «Low-voltage electromechanical elementary relays») и ограничение области его применения только на реле низкого напряжения (с номинальным напряжением до 1000 В).

В разделе 5.7а стандарта IEC 61810-1 указывается, что ряды номинальных значений токов и напряжений для индуктивных нагрузок должны соответствовать приложению «В». Однако, в приложении В нет никаких рядов номинальных значений токов и напряжений. В этом приложении указана перегрузочная способность контактов при замыкании и размыкании контактов (в виде кратности относительно номинальных значения токов и напряжений). Указанные в таблице В1 классы нагрузки АС-15 и DC-13 являются так называемыми «категориями применения» и характеризуют нагрузки в виде катушек управления электромагнитных аппаратов управления: реле, контакторов и пускателей с токами, в доли-единицы ампер, в то время как стандарт IEC 61810-1 распространяется на реле с коммутируемым током в десятки ампер (до 100 А). Таким образом, налицо явное несоответствие. Фактически, стандарт IEC 61810-1 не определяет коммутирующую способность реле для индуктивной нагрузки, а лишь запутывает ситуацию, поскольку для токов в десятки ампер категории АС-15 и DC-13 не применимы.

3. Документация и маркировка

3.1. В качестве одного из важнейших параметров реле, который должен быть отражен в каталоге или инструкции по эксплуатации реле согласно стандарту IEC 61810-1 является тип разрыва цепи, обеспечиваемого контактами реле. В соответствии с таблицей 4 (п. 7.1) должен быть указан один следующих типов разрыва цепи: микроразрыв (3.5.16), микро-отключение (3.5.17) или полное отключение (3.5.18). Как следует из раздела «Термины и определения», отличия между этими типами разрыва цепи заключаются в величине контактного зазора, то есть, в конечном счете, в электрической прочности межконтактного зазора. Зачем понадобилось изобретать специальную терминологию, мало понятную потребителям реле и вводить ее в техническую документацию на реле, если вместо всего этого было бы достаточно указать электрическую прочность межконтактного зазора?

3.2. В качестве другого обязательного параметра, который должен быть отражен в технической документации, в таблице 4 указывается тип изоляции, в том числе функциональная или базовая. Тут же в примечании отмечается, что она зависит от применения реле (как именно, мы уже показали выше). Но если она зависит от конкретного применения реле и заранее не может быть определена, то что же тогда должно быть указано в технической документации?

Читайте также:  Регулятор силы тока реостатом

3.3. Наряду с крайне сомнительными по своей информативности и определенности параметрами, которые стандарт IEC 61810-1 требует указывать в технической документации, из рассмотрения выпали такие важнейшие параметры реле, как время срабатывания и отпускания, время дребезга контактов, величина переходного сопротивления контактов, постоянная времени катушки управления, минимальные коммутируемые напряжение и ток, и др., о которых даже не упоминается как о параметрах, необходимых для обязательного указания в технической документации.

3.4. В п. 7.1 (табл. 4 Стандарта) предлагается способ обозначения допустимой нагрузки контактов реле посредством указания типа нагрузки, тока и напряжения (без указания какого: максимального или номинального). В п. 7.4 (табл. 6 Стандарта) приводятся примеры маркировки коммутационной способности контактов реле, допускающий обозначение только номинальных значений коммутируемых токов и напряжений в виде: 16 А 230 В (или 16/230), даже без указания типа нагрузки (cosϕ на переменном токе или отношение L/R — на постоянном). Следует отметить, что такое обозначение не дает потребителю информации об истинной коммутационной способности контактов реле и способно лишь ввести его в заблуждение.

Во-первых, без обязательного обозначения типа нагрузки просто невозможно оценить коммутационную способность реле, поскольку ее изменения в зависимости от вида нагрузки весьма существенны. Например, для силового реле типа G7Z (Omron) допустимый коммутируемый ток изменяется от 40 А при чисто активной (резистивной) нагрузке до 22 А при смешанной нагрузке с cosφ = 0,3.

Во-вторых, в п. 7.1 говорится о коммутируемом токе и напряжении, а в п. 7.4 о номинальном значении коммутируемого тока и напряжения, а это может быть совсем не одно и то же, так как в соответствии с объяснением п. 3.3.16 стандарта, под номинальным значением понимается значение величины, соответствующее специально оговоренным условиям. То есть, «номинальный коммутируемый ток» — это ток при определенных, оговоренных условиях. Такими условиями могут быть напряжение на контактах, частота, вид нагрузки. Однако в стандарте IEC 61810-1 нет никаких разъяснений по поводу того, что понимается под термином «номинальный коммутируемый ток» или «номинальное коммутируемое напряжение», что делает практически невозможным корректное использование этих терминов и связанных с ними значений.

Например, что такое «номинальный коммутируемый ток 16 А»? Это ток при напряжении на контактах 250 В или только при напряжении не более 125 В? Это ток только для чисто активной нагрузки, или для смешанной тоже? И так далее.

В-третьих, поскольку понятие «номинальный» в стандарте не оговорено, обозначение на корпусе реле коммутационной способности контактов в виде: «16 А 230 В» отнюдь не всегда говорит о том, что контакты реле могут коммутировать ток 16 А при напряжении 230 В.

Во многих случаях, идет речь о значениях тока и напряжения, характеризуемых в технической документации производителей реле, как «максимальные значения». При этом указывается максимальное коммутируемое напряжение, максимальный коммутируемый ток и максимальная коммутируемая мощность. Как правило, максимальная коммутируемая мощность не равна произведению максимального тока на максимальное напряжение, см. табл. 1. Это связано с тем, что величина максимально допустимого коммутируемого тока одним и тем же контактом в сильной степени зависит от величины напряжения, особенно на постоянном токе, и от вида нагрузки, рис. 1.

К сожалению, в стандарте IEC 61810-1 такие «тонкости» даже не упоминаются, что существенно затрудняет его практическое использование.

Таблица 1. Коммутационные параметры контактов некоторых типов электромеханических реле широкого применения

Тип реле и производитель Максимальный коммутируемый ток Максимальное коммутируемое напряжение Максимальная коммутируемая мощность Произведение тока на напряжение
750-523 (Wago) 16A AC 440V AC 5000 VA 7040 VA
J114FL (CIT Relays) 16 A 440V AC 125V DC 4000 VA 480 W 7040 VA 2000 W
CT (NAiS) 8 A AC 380V AC 2000 VA 3040 VA
G2RL (Omron) 12A AC 440 V AC 3000 VA 5280 VA

4. Испытание реле

4.1. В п. 8.2 стандарта указывается, что испытание реле на нагрев производится при включенной катушке (катушках) реле и нагрузке током всех контактов. На практике реализовать это требование невозможно, по следующим причинам:

Во-первых, одновременная подача напряжения на обе катушки управления в реле с двумя катушками (характерными для двухпозиционного реле с защелкой) может привести к механическому повреждению механизма защелки.

Во-вторых, катушки управления в двухпозиционных реле с защелкой, как правило, не предназначены для длительной работы под током и могут просто сгореть во время испытания.

В-третьих, если в реле имеются и нормально открытые и нормально закрытые контакты, то как можно загрузить током одновременно все контакты, как того требует стандарт?

4.2. В п. 10.3 описана процедура испытания диэлектрической прочности изоляции реле. При этом в качестве одноминутного испытательного напряжения рекомендуется применять переменное синусоидальное напряжение частотой 50 или 60 Гц или постоянное напряжение, величина которого выбирается из таблицы 10 или 11. Сравнивая между собой эти две таблицы можно заменить, что приведенные в них значения напряжений совершенно идентичны для одних и тех же видов присоединения. Но ведь в одном случае речь идет о действующем значении напряжения переменного тока, а в другом — о напряжении постоянного тока! Как известно, напряжение в 1000 В действующего значения переменного тока воздействует на изоляцию совсем не так, как напряжение в 1000 В постоянного тока. С точки зрения воздействия на изоляцию, даже в самом простейшем случае, то есть, даже пренебрегая известными физическими эффектами, связанными с воздействием частоты переменного напряжения на изоляцию, следует, как минимум, ввести коэффициент 1.41 в качестве соотношения между этими напряжениями, о чем в стандарте IEC 61810-1 даже не упоминается.

4.3. При испытаниях на коммутационную износостойкость в качестве критерия оценки состояния реле предлагается использовать такие понятия, как «сбой в замыкании» или «сбой в размыкании» контактов. Причем под «сбоем» понимается такое состояние (контактов) когда они не в состоянии выполнять свои функции. Определенное количество и последовательность сбоев при испытании характеризует исправность или неисправность реле. Наряду с этим критерием, для оценки исправности реле применяется его повторное испытание на электрическую прочность изоляции. Однако, хорошо известно, что после большого количества циклов срабатывания под максимальным током может существенно измениться не только электрическая прочность изоляции внутри реле, но и межконтактное сопротивление (вследствие эрозии контактных поверхностей). Известно также, что при использовании контактов реле в слаботочных цепях электронной аппаратуры, именно существенное возрастание сопротивления контактов является одной из частых причин отказа этой электронной аппаратуры. В таком случае можно констатировать, что реле не в состоянии выполнять свои функции (то есть соединять цепи) и к нему применим термин «отказ». Следовательно, межконтактное сопротивление является важнейшим критерием при оценке исправности реле и должно быть применено в качестве еще одного критерия при испытаниях реле на коммутационную износостойкость.

5. Выводы

Проведенный анализ показал, что последняя (третья) редакция стандарта IEC 61810-1 содержит большое количество неточностей и даже ошибок в важнейших разделах, поэтому при практическом использовании этого стандарта необходимо проявлять осторожность. При разработке или пересмотре национальных стандартов, основывающихся на данном международном стандарте, необходимо учитывать обнаруженные неточности и ошибки.

Литература

  1. Gurevich V. Electrical Relays: Principles and Applications. — CRC Press (Taylor & Francis Group), Boca Raton-London-New York, 2005, 704 p.
  2. Gurevich V. Protection Devices and Systems for High-Voltage Applications. — Marcel Dekker, New York, 2003, 292 p.

В. И. ГУРЕВИЧ, канд. техн. наук

Источник