Меню

Для регенерации переменного электрического тока может быть использован

Как происходит выпрямление переменного тока

Как известно, электростанции вырабатывают переменный ток. Переменный ток легко преобразуется с помощью трансформаторов, он передается по проводам с минимальными потерями, на переменном токе работают многие электродвигатели, в конце концов, все промышленные и бытовые сети работают сегодня именно на переменном токе.

Однако для некоторых применений переменный ток принципиально не годится. Заряжать аккумуляторы необходимо постоянным током, электролизные установки питаются постоянным током, светодиоды требуют постоянного тока, и много где еще просто не обойтись без постоянного тока, не говоря уже о гаджетах, где изначально используются аккумуляторы. Так или иначе, иногда приходится добывать постоянный ток из переменного путем его преобразования, для решения этой задачи и прибегают к выпрямлению переменного тока.

Однополупериодная схема выпрямления переменного тока

Для выпрямления переменного тока используют диодные выпрямители. Простейшая схема выпрямителя, содержащая всего один полупроводниковый диод, называется однополупериодным выпрямителем. Переменный ток здесь проходит через первичную обмотку трансформатора, вторичная обмотка которого одним своим выводом соединена с анодом диода, а другим — с цепью нагрузки, которая в свою очередь, будучи присоединена к катоду диода, замыкает вторичную цепь трансформатора.

Рассмотрим, что происходит в первый момент времени, когда к аноду диода приложено положительное, относительно его катода, напряжение, действующее в течение первого полупериода переменного тока.

В этот момент электроны движутся от катода к аноду диода, через провод вторичной обмотки трансформатора, через дроссель и далее через нагрузку, — так замыкается цепь. Когда начинается противоположный полупериод, электроны от анода к катоду проникнуть не могут, поэтому тока в цепи во время этого полупериода нет. С наступлением следующего полупериода процесс повторяется.

Итак, поскольку ток в цепи течет лишь во время одного из полупериодов, такой тип выпрямления называется однополупериодным выпрямлением. А по причине того, что во время отрицательных полупериодов ток в цепь нагрузки не попадает, форма его получается пульсирующей, ведь действует он в одном направлении, хотя и изменяется по величине.

Пульсирующее напряжение после выпрямления на осциллографе

Сглаживающий фильтр, состоящий из дросселя (катушки индуктивности) и конденсаторов, применяется в данной схеме для того, чтобы снизить уровень пульсаций на нагрузке, и сделать ток почти идеально постоянным. Практически переменную составляющую схема фильтра в нагрузку не пропускает, пропускает лишь постоянную составляющую.

Реактивное индуктивное и емкостное сопротивление

Катушка обладает индуктивным сопротивлением, которое зависит от частоты тока, и чем выше частота — тем больше индуктивное сопротивление катушки, поэтому переменной составляющей пульсирующего тока катушка сопротивляется. Постоянную составляющую катушка пропускает легко.

Конденсатор же пропускает переменную составляющую, но не пропускает постоянную, и чем выше частота тока, тем сильнее конденсатор ее пропускает. В общем и целом чем больше емкость конденсатора и чем выше индуктивность катушки дросселя — тем меньше ненужной переменой составляющей в постоянном токе, текущем конкретно через нагрузку.

Итак, когда в цепи действует положительная полуволна тока, первый конденсатор заряжается до амплитудной величины переменного напряжения вторичной обмотки (минус падение напряжения на диоде). Когда действует отрицательная полуволна, электричество в конденсатор не поступает, и он, разряжаясь на нагрузку, поддерживает в ней постоянный ток.

Если бы не было дросселя, то поскольку напряжение на конденсаторе в ходе данного процесса уменьшалось бы, ток на нагрузке так или иначе имел бы сильные пульсации. Чтобы пульсации понизить, в цепь и добавляется дроссель (катушка), да еще и с дополнительным конденсатором, расположенным за ним. Второй конденсатор принимает на себя ток, идущий через дроссель, который уже почти не содержит пульсаций.

Двухполупериодное выпрямление переменного тока

Чтобы пульсации сгладить еще лучше, применяют двухполупериодный выпрямитель. Двухполупериодный выпрямитель может быть реализован одним из двух способов. Он может быть выполнен по мостовой схеме (состоящей из четырех диодов), либо включать в себя всего два диода, но тогда вторичная обмотка трансформатора должна иметь удвоенное количество витков и вывод посередине между половинами обмоток.

Двухполупериодный выпрямитель работает следующим образом. В течение одного из полупериодов (допустим, положительного) ток направлен от анода к катоду верхнего по схеме диода, а нижний по схеме диод ток в это время не пропускает, он заперт (так же ведет себя единственный диод в однополупериодном выпрямителе во время отрицательной полуволны тока).

Ток замыкается через фильтр, нагрузку, и далее — через средний вывод на обмотку трансформатора. Когда наступает второй полупериод, полярность тока такова, что нижний по схеме диод пропускает ток через фильтр и через нагрузку, а верхний диод заперт. Далее процессы повторяются.

Поскольку ток здесь подается к нагрузке в течение каждого из двух периодов, такое выпрямление называется двухполупериодным выпрямлением, а выпрямитель — двухполупериодным выпрямителем. Пульсации на выходе здесь вдовое меньше, чем у однополупериодного выпрямления, поскольку частота выпрямленных импульсов вдвое больше, индуктивное сопротивление дросселя получается вдвое большим, а конденсаторы не успевают значительно разряжаться.

Более подробно типовые схемы различных выпрямителей рассмотрены здесь: Схемы однофазных выпрямителей электрического тока

Источник

Химические источники электрической энергии

Химические источники электрической энергии

Химические источники электрической энергииХимическими источниками электрической энергии это устройства, превращающие химическую энергию какой-либо реакции в электрическую. Для такого превращения необходимо, чтобы процессы, связанные с изменением зарядов у электродов (т. е. окислительный и восстановительный процессы), были разделены пространственно, и электроны проходили через внешнюю цепь.

Примером подобного устройства может служить медно-цинко вый источник электрической энергии, предложенный Даниелем и Якоби в 1836 г. Медь, погруженная в раствор медного купороса, отделена диафрагмой от цинка, погруженного в раствор цинкового купороса:

При работе элемента цинк переходит в раствор, отдавая электроны: Zn → Zn 2+ + 2e. Электроны по внешней цепи проходят к меди, на медном электроде из раствора выделяется медь: Cu 2+ + 2e → Сu. Поток электронов, т. е. электрический ток во внешней цепи, может быть использован для работы, что и является целью применения ХИЭЭ. На цинковом электроде происходит реакция окисления, а на медном — реакция восстановления. Цинковый электрод несет отрицательный заряд, а медь — положительный. Химическая реакция, протекающая в медно-цинковом элементе, может быть записана следующим образом:

В электротехнике условно принято считать направление электрического тока обратным направлению движения электронов во внешней цепи (рис 2, а). Анодом служит электрод, на котором идет окислительный процесс, катодом — электрод, на котором идет восстановление.

Для регенерации активных веществ можно после работы медно-цинкового элемента подвести к нему ток от внешнего источника электрической энергии. Направления движения ионов и электронов станут обратными (рис. 2,6). Следует отметить, что хотя окислительный и восстановительный процессы поменяются местами, знак заряда электродов сохранится (медь — плюс; цинк — минус).

Движения ионов и электронов при работе медно цинкового элементаЕсли бы мы не разделяли процессы на электродах пространственно, а, например, опустили палочку цинка в раствор медного купороса, то реакция все равно бы прошла, но химическая энергия процесса превратилась бы не в электрическую, а в тепловую и была бы истрачена на нагрев раствора. Количество тепла, которое выделяется при реакции, и количество электрической энергии, которое может быть от нее получено при пространственном разделении окислительного и восстановительного процессов, связаны между собой уравнением Гиббса —Гельмгольца.

Рис. 2. Схема движения ионов и электронов при работе медно цинкового элемента.

При работе элемента Даниеля — Якоби количество энергии, переходящей в электрическую, меньше величины теплового эффекта реакции. Элемент разогревается, и часть энергии теряется. Температурный коэффициент элемента Даниеля — Якоби равен —3,59 • 10 -4 в /град. Тепловой эффект реакции

равен ∆Н = —55 189 кал.

Известны элементы, у которых температурный коэффициент положителен, при работе они охлаждаются и поглощают тепло из внешней среды. Получаемое в них количество электрической энергии больше, чем соответствует расчету по формуле Томсона.

Химические источники электрической энергии бывают одноразового и многократного действия. ХИЭЭ одноразового использования называются первичными элементами, а многократного действия вторичными элементами или аккумуляторами. Иногда первичные элементы называют просто «элементами» или «гальваническими элементами». Аккумуляторами могут служить только такие химические источники электрической энергии, основные процессы в которых протекают обратимо.

Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока от постороннего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным имевшемуся при разряде, на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном электроде реакция восстановления заменяется реакцией окисления. Таким образом, в аккумуляторах запас химической энергии, истраченной на получение электрической энергии при разряде, возобновляется при заряде.

Так как напряжение одного отдельного первичного элемента или аккумулятора очень невелико— они в большинстве случаев применяются последовательно соединенными по несколько штук. В таком виде ХИЭЭ называют «батареей».

Читайте также:  Блок питания 200в постоянного тока

Электродвижущая сила и напряжение при разряде

Основной характеристикой химических источников электроэнергии является их электродвижущая сила, т. е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи.

Для практики более важной величиной, чем э. д. с, является напряжение химического источника электрической энергии при замкнутой внешней цепи.

Напряжение при разряде меньше э. д. с. по двум причинам: во первых, потенциалы электродов при отборе тока .от ХИЭЭ заметно отличаются от тех, которые имеют место при разомкнутой внешней цепи и во-вторых, часть э. д. с. теряется на преодоление внутреннего сопротивления элемента. Это можно выразить формулой:

V = φ a — φ кIr = IR

где φ a , φ к— потенциалы электродов при отборе тока; I — ток разряда; r — внутреннее омическое сопротивление ХИЭЭ; R — внешнее сопротивление (нагрузка) при разряде.

Потенциалы электродов при работе химического источника электрической энергии (разряде или заряде) отличаются от потенциалов, измеренных при разомкнутой внешней цепи, на величину, называемую э. д. с. поляризации:

где Епол — э. д. с. поляризации.

Внутреннее сопротивление ХИЭЭ

Напряжение при разряде (заряде), кроме поляризации электродов, зависит также от падения напряжения на преодоление внутреннего омического сопротивления ХИЭЭ. Последняя величина слагается из омического сопротивления проводников первого рода (электродов), электросопротивления электролита и сепараторов. При разряде малыми плотностями тока падение напряжения внутри ХИЭЭ не имеет значения, но при больших плотностях тока оно может оказаться заметным. Например, в свинцовом автомобильном аккумуляторе омическое сопротивление электролита и сепараторов при комнатной температуре приблизительно равно 0,006 ом на 1 дм 2 площади электродов. При плотности тока разряда 12 а/дм 2 падение напряжения составит около 70 мв, т. е. около 3,5% от э. д. с. аккумулятора.

На практике часто представляет интерес произвести приближенные расчеты напряжения при разряде в зависимости от нагрузки ХИЭЭ. Пользуются иногда условной величиной внутреннего сопротивления ХИЭЭ, характеризующей разницу между э. д. с. и напряжением при разряде, происходящую как от поляризации, так и от падения напряжения на преодоление внутреннего омического сопротивления. Тогда:

где V — напряжение, в; Е — электродвижущая сила, в; I— ток разряда, a; R — условное внутреннее сопротивление ХИЭЭ.

Величина К является грубо приближенной, так как омическая составляющая условного внутреннего сопротивления не зависит от нагрузки, а поляризация резко меняется при изменении плотности тока разряда. Величину К находят, производя несколько кратковременных разрядов ХИЭЭ различными токами и принимая среднюю величину. Внутреннее омическое сопротивление ХИЭЭ в принципе можно определить путем замеров переменным током, но, так как эта величина очень мала, результаты получаются ненадежными.

Для вычисления К существуют эмпирические формулы, однако они дают удовлетворительные результаты только в частных случаях. При точных расчетах пользоваться величиной К не рекомендуется, а необходимо произвести экспериментальное определение величины напряжения в зависимости от нагрузки ХИЭЭ.

Емкость и энергия ХИЭЭ

Емкостью ХИЭЭ называют количество электричества, которое можно от него отобрать при разряде в определенных условиях. Для аккумуляторов различают емкость при разряде и при заряде. Емкостью при заряде называют количество электричества, которое требуется израсходовать при заряде аккумулятора в данных условиях.

Емкость при заряде, как правило, больше емкости при разряде, так как часть тока заряда теряется на побочные процессы. Емкость ХИЭЭ зависит от количества заложенных в них активных веществ и степени их использования. Использование активных материалов обычно тем лучше, чем ниже плотность тока разряда и чем выше температура. Повышение температуры имеет некоторый предел, выше которого нормальному использованию ХИЭЭ препятствуют усиливающиеся побочные процессы.

Энергия ХИЭЭ выражается произведением его емкости на среднее напряжение.

Для аккумуляторов отдачей по энергии η называют отношение энергии, отданной при разряде, к энергии, полученной при заряде.

Для сравнения различных типов ХИЭЭ пользуются удельными величинами: емкостью, энергией или мощностью, отнесенными к единице веса или объема ХИЭЭ.

Саморазряд и сохранность ХИЭЭ

Активные материалы ХИЭЭ частично расходуются и на бесполезные побочные процессы. К таким процессам относятся, например, утечки тока через случайные замыкания в ХИЭЭ, растворение электродов в элекролите и др.

Потери емкости, происходящие из-за вредных побочных процесс сов, называются саморазрядом, имеются некоторые специальные конструкции элементов, у которых саморазряд настолько велик, что электролит в них приходится заливать только перед самым на чалом работы. Например, в свинцово-цинковом элементе, приводи мом в действие путем заполнения раствором серной кислоты, бесполезно теряется при разряде 10—30% цинка, растворяющегося в серной кислоте с выделением водорода. Сохранность ХИЭЭ тесно связана с их саморазрядом. Сохранностью называют время, в течение которого ХИЭЭ годен к употреблению, т. е. сохраняет определенный запас электрической энергии.

Для аккумуляторов, кроме сохранности, важной характеристикой является также срок службы. Срок службы выражают либо во времени, в течение которого аккумулятор пригоден для разрядов и зарядов, либо в числе циклов заряда и разряда, в течение которых аккумулятор способен отдавать емкость не ниже предусмотренной для данного типа.

Применение химических источников электрической энергии и требования, предъявляемые к ним

Химические источники электрической энергии в настоящее время широко применяют в промышленности и быту. Это вызвано тем, что большое количество современных машин и аппаратов нуждается в автономных источниках электрической энергии, не связанных с неподвижными электрическими станциями.

Для промышленного применения ХИЭЭ должны обладать рядом свойств, редко встречающихся одновременно в одной системе. ХИЭЭ должны отвечать следующим требованиям:

1 ) иметь возможно большую э. д. с;

2) отдавать большие токи без резкого падения э. д. с, т. е. не сильно поляризоваться в процессе работы;

3) активные вещества должны иметь возможно малый эквивалентный вес и высокую степень использования;

4) обладать малым саморазрядом, хорошей сохранностью;

5) производство ХИЭЭ должно быть технологичным и доступным по цене.

Аккумуляторы, кроме того, должны иметь высокую отдачу по энергии и большой срок службы.

Выбор электрохимических систем для ХИЭЭ

Для получения ХИЭЭ с наибольшей э. д. с. следовало бы взять электроды, наиболее далеко отстоящие друг от друга в таблице стандартных потенциалов.

Очень высокой э. д. с. обладал бы элемент с электродами, изготовленными из лития и фтора, но осуществить его невозможно, так как эти вещества мгновенно вступают в реакции с водными растворами и водой.

В качестве материала для отрицательного электрода все щелочные металлы в чистом виде применить крайне трудно, так как они слишком энергично реагируют с водными растворами. При приведении в соприкосновение электродов из щелочных металлов с электролитом весь материал расходуется на химическую реакцию настолько быстро (со взрывом), что не удается отобрать во внешнюю цепь существенное количество электричества.

При замене водных растворов электролитов на неводные реакции щелочных металлов с электролитом замедляется, но соответственно снижается и электродный потенциал. Попытки использовать для отрицательного электрода магний или алюминий затруднены тем, что эти металлы находятся либо в пассивном состоянии и имеют потенциал значительно более положительный, чем соответствует стандартных потенциалов, либо при активации начинают слишком бурно реагировать с электролитом. Первичные элементы с электродами из магния все же удалось осуществить.

Наиболее распространены первичные элементы с отрицательным электродом из цинка. Применение цинка объясняется тем, что он не сильно поляризуется, дает хороший коэффициент использования металла и хорошо сохраняется.

Статья на тему Химические источники электрической энергии

Источник

Электрические поля и регенерация

Восстановление утраченных конечностей и органов у человека, давнишняя мечта медиков и биологов. Природа как бы подсказывает нам, как это сделать, и для примера заготовила нам некоторых беспозвоночных и позвоночных животных, которые обладают удивительной способностью к регенерации органов и тканей. Остается только подсмотреть, как это они делают, и понять механизм формообразования вновь отрастающих органов. И тут исследователи поняли, что не все так просто, и что они столкнулись с одной из загадок жизни, которая не поддается быстрому решению.

Однако есть одно действие в этой задаче, которое уже становится понятным для ученых – это повышение потенциалов электрических полей и смена их полярности при процессах роста и регенерации. Может быть, это и есть «нить Ариадны», которая нас выведет из лабиринта знаний о таинственной регенерации.

Есть мнение среди ученых, что морфогенетическое поле, отвечающее за пространственное распределение клеток и форму организма, образуется вокруг развивающихся структур из известных нам физических полей. Но такое поле будет обладать уже другими свойствами, так как наложение различных структурированных полей малой интенсивности друг на друга будет проявлять себя в пространстве уже не как сумма ряда полей, а как информационное морфогенетическое поле. Аналогию можно провести со сплавом металлов, часто сплав обладает совсем другими свойствами, чем составляющие его отдельные металлы.

Читайте также:  В цепь переменного тока с действующим напряжением 220в

Сколько бы мы ни рассуждали о морфогенетических полях, их природа для нас остается пока загадочной. Но один компонент этих полей явно действует на процессы формообразования и роста у живых организмов. Таким компонентом является электрическое поле, создаваемое живыми клетками и отдельными органами. И тут ученые пошли еще дальше, они пытаются даже имитировать слабые электрические поля и ускорять регенерацию органов и тканей с их помощью, а иногда даже менять весь формообразовательный процесс.

Так уж получилось, что человек, прежде всего, познакомился со свойствами электрических полей и выяснил, что наиболее эффективное действие оказывают друг на друга заряженные объекты. Поэтому уже сто с лишним лет тому назад исследователи начали проверять действие электрического поля на растения и животных, особенно во время роста и развития исследуемых объектов. Несовершенное оборудование и противоречивые результаты не позволили сделать объективных выводов. Но техника эксперимента оттачивалась, и уже в 1922 году Лунд обнаружил интересную закономерность – слабые электрические токи, пропускаемые через среду, могут ориентировать плоскость первого деления в яйцеклетке бурой водоросли фукус. Первое деление шло в плоскости, перпендикулярной к направлению тока. Но еще более интересные результаты появились у того же автора, когда он изучал действие электрического поля на полярность регенерирующего гидроида.

Существует животное, похожее на веточку растения. Это морские полипы – обелия. Действительно, если отрезать кусочек от живой обелии (рис. 1), и поместить в электрическое поле, – куда он будет расти: верхним концом к положительному или отрицательному полюсу? Лунд так и сделал. Он вырезал кусочек гидроида и поместил его на 15 часов в электрическое поле с плотностью тока 0,02 миллиампера на мм2. Оказалось, что верхний конец всегда растет к аноду, или положительному полюсу. Ну а если кусочек обелии положить верхним концом к катоду, или отрицательному полюсу, это же будет противоречить его собственному электрическому полю? И действительно, течение регенерации изменилось на противоположное. Нижний конец гидроида стал как бы верхним и начал расти к аноду. Более сильное внешнее электрическое поле подавило электрическое поле гидроида и заставило клетки поверить, что верхний конец находится в противоположной стороне. Опыты Лунда были повторены другими учеными, такими как С. Роуз, С. Смит, только на других беспозвоночных животных, способных к регенерации. Роуз работал на другом гидроиде – тубулярии (рис.2), и у него получалось, что головной конец возникал всегда у катодного полюса независимо от ориентации куска гидроида. Как видим, другой объект и другие результаты.

Сходные результаты получились и при регенерации у планарий (рис. 3). Планариям отрезали голову и хвостовой отдел. Независимо от ориентации головной конец возникал всегда у катода. Но можно так подобрать плотность тока, что собственное электрическое поле планарий тоже будет оказывать воздействие на морфогенез. Тогда планария, помещенная хвостовым концом к катоду, начинает отращивать вместо хвоста голову, да и своя собственная голова растет на противоположном конце. И получается животное с двумя головными отделами, направленными в разные стороны.

Слабые электрические поля действуют на регенерацию не только у беспозвоночных животных; у позвоночных животных под действием электрических полей ускоряется регенерация конечностей, срастание костей и заживление ран. Всем известно, что переломы костей срастаются или регенерируют. Но каково было удивление исследователей, когда они заметили, что переломы костей у земноводных сопровождаются изменением их электрического потенциала. Происходит как бы электрический всплеск, продолжающийся несколько дней, затем заряд из положительного переключается на отрицательный и медленно возвращается к исходному. Все эти электрические колебания способствуют тому, что клетки крови, излившиеся в область травмы и давшие гематому, проходят расспециализацию (дедифференцировку). Эритроциты превращаются в клетки, напоминающие клетки эмбрионального типа, а затем из них образуется хрящ, который заменяется костью. Ученых заинтересовало, не электрическое ли поле способствует этому превращению клеток? Они проследили за поведением клеток в культуре при действии электрического поля, оказалось, что культивируемые эритроциты начали терять признаки специализации и превращались в округлившиеся клетки, напоминающие клетки эмбриона. Такие вещи у земноводных возможны. Ведь у них сохраняется ядро в эритроцитах в отличие от млекопитающих. Значит, электрическим полем можно стимулировать регенерацию, и, возможно, высшие млекопитающие и человек только потому не могут отрастить утраченную конечность, что их собственный потенциал значительно уступает тому всплеску электрического поля, который наблюдается, скажем, у тритона, способного к регенерации конечности?

В настоящее время медики начинают использовать для регенерации стволовые клетки. Работы в этой области сулят нам радужные перспективы. Но сколько еще предстоит изучить, прежде чем использовать стволовые клетки в широких масштабах на практике. Вполне может оказаться, что, при стимуляции электрическими полями с характеристиками близкими к тем, которые возникающим у тритонов или саламандр при регенерации конечности, могут быстрее заполнить дефект и восстановить поврежденный орган.

Роберт Беккер, ученый-ортопед, работающий в одном из госпиталей для ветеранов в США, решил провести электростимуляцию регенерации конечности у крыс. Он ампутировал на уровне плечевой кости конечности у 20 однодневных крыс, а в оставшуюся часть мускулатуры вживил электроды. Сила тока подбиралась примерно такой величины, какая естественно возникает при удалении конечности у тритона. Контрольным крысам либо вообще культю не стимулировали, либо ток давали значительно большей величины.

Результат оказался положительным. У значительной части животных реконструировалась целая плечевая кость, практически не отличимая от нормальной. Правда, другие ткани не восстановились полностью и дали что-то похожее на одну из стадий регенерации конечности у саламандр. Беккер считает, что можно подобрать оптимальные условия электростимуляции, при которых регенерирует вся конечность у млекопитающих, а возможно, и у человека.

Таким образом, можно в какой-то мере считать, что электрическое поле играет значительную роль в организационном центре организма, следящем за развитием или регенерацией отдельных частей организма. Но электрическое поле самого организма имеет сложную пространственную структуру, напоминающую кружево, которое в настоящее время человек еще не может создать. И это не удивительно – ведь собственное электрическое поле организма формируется путем суммарного наложения отдельных микроскопических клеточных полей делящихся клеток. Экспериментаторы же, подключая искусственное электрическое поле, могут только внести искажение в кружевной пространственный рисунок электрического поля самого организма, которое играет важную роль в формообразующих процессах. И как мы видим из приведенных выше примеров, это действие не бесследно. К тому же электрическое поле не единственный компонент общего формообразующего поля, управляющего процессами морфогенеза. Частично уже исследовано действие магнитного поля живого организма. Но значительная часть других составляющих формообразующего поля еще не изучена.

Какое же воздействие может оказывать электрическое поле на процессы формообразования? Здесь тоже нет окончательного ответа, но существует несколько гипотез.

По одной из этих гипотез, которой придерживается Роуз, электрическое поле живых организмов своей пространственной конфигурацией влияет на транспорт специфических репрессоров, ведающих дифференцировкой (специализацией) клеток. Это создает картину химической цитодифференцировки, в какой-то мере отражающей пространственный рисунок самого электрического поля. Чтобы подтвердить эту гипотезу, были поставлены оригинальные опыты все с тем же гидроидом табулярией. Если отрезки табулярии соединить последовательно, то верхний отращивает щупальца, у него образуется рот; а рост нижнего подавляется, он становится как бы хвостовым отделом. Ну а теперь попробуем соединить отрезки табулярии «лицом к лицу». Получается совсем другое дело: каждый регенерирует головной конец самостоятельно, как будто между ними нет взаимодействия. Роуз объясняет это тем, что при последовательном соединении гидроиды образуют одно общее электрическое поле, когда же их головные концы направлены друг к другу, их поля не объединяются. Видимо, что-то похожее происходит и другими живыми структурами, когда при контакте совпадают их электрические поля или отталкиваются.

Конечно, гипотеза Роуза оригинальна и опыты убедительны, но ведь предложенный механизм объяснения формообразовательных процессов, по-видимому, применим только к низшим организмам, таким как кишечнополостные.

Другая гипотеза, разработанная рядом ученых, называется информационной. Есть мнение, что межклеточные связи, а следовательно, пространственная дифференцировка, регулируются за счет безнервной передачи информации. Роль таких передатчиков информации в организме выполняют щелевые контакты, которые образуются на ранних стадиях развития. Авторы гипотезы предполагают, что расположение щелевых контактов определяется электрическим полем. Если слабое электрическое поле, созданное экспериментаторами, по своим параметрам будет близко к электрическому полю организма, то это может привести к передаче информационных сигналов и изменить процессы дифференцировки и роста.

Читайте также:  Синусоидальный ток что делать

Понимая всю сложность рассматриваемого вопроса, мы можем придти к выводу, что слабые длительно действующие электрические поля, несомненно, влияют на формообразовательные процессы, но их действие неоднозначно. Механизм воздействия электрических полей на процессы роста, развития и регенерации, возможно, опосредован изменением других полей, химических реакций и других биологических процессов.

Пытаясь понять механизмы формообразования и управления пространственной конфигурацией организмов, мы рассмотрели основные направления и пути, по которым идут ученые, чтобы раскрыть глобальную загадку биологии – процесс морфогенеза. Сами же механизмы формообразовательных процессов окончательно не познаны, их контуры только вырисовываются в представленных здесь гипотезах. Время важнейших открытий в биологии еще впереди!

Рис. 1. -Гидроид Обелия, на котором работал Лунд. А — колония (слегка увеличено), Б — отдельная веточка колонии (несколько схематизировано, часть особей колонии изображена в разрезе):

1 — гидрант в расправленной состоянии, 2 — сократившийся гидрант, 3 — оболочка, 4 — почка, 5 — развивающиеся медузы, 6 — оболочка вокруг гидроида, 7 — оболочка, закрывающая созревающие половые клетки

Рис. 2 — Отдельный гидрант гидроида Тубулярия, способный к регенерации любимый объект Роуза.:

/ — рот, 2 — венчики щупалец, 3 — выросты с клетками для размножения

Спинная поверхность Брюшная поверхность

Рис. 3. Тигровая планария (винтообразно изогнута, чтобы показать брюшною поверхность), на которой ставится большинство опытов по регенерации головы и всего тела из отдельных фрагментов.

Юрий СИМАКОВ, доктор биологических наук, профессор, член Московского общества испытателей природы

Сведения об авторе

Симаков Юрий Георгиевич, профессор, доктор биологических наук.

Каф. Биоэкологии и ихтиологии, Московский государственный университет технологий и управления.

Автор 150 научно-популярных статей и ряда научно-популярных книг (Жизнь пруда, Живые приборы, Животные анализируют мир. Читать по глазам людей и животных, Удивительный мир животных)

Источник



Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник