Меню

Электрический ток цель исследования

Проект Электричество в повседневной жизни

Министерство образования Республики Башкортостан

Муниципальное бюджетное общеобразовательное учреждение «Гимназия№3» городского округа город Октябрьский

Электричество в повседневной жизни

ученик 9 а класса МБОУ «Гимназия №3»

учитель физики МБОУ «Гимназия №3»

г. Октябрьский РБ

Электричество в нашей жизни

Электричество и человек

Электричество в природе

Сейчас практически невозможно представить себе современную жизнь без электроприборов и электричества. Уже несколько поколений удивляются и не понимают – как когда-то люди жили без такого блага цивилизации – электричества?

Я провел исследования по теме «Электричество в повседневной жизни» и хотел узнать, что такое электричество, как его можно обнаружить в нашей повседневной жизни. В настоящее время очень большую роль играют электрические приборы, но большинство людей даже не представляют насколько они опасны.

Цель : узнать где мы можем встретить электричество, и как мы можем уберечь себя от удара током.

изучить литературу об электричестве;

узнать, откуда берется электричество;

применить знания, умения, правила техники безопасности на практике.

Тесное повседневное общение с большим количеством разнообразных электроприборов, машин и аппаратов, влечет за собой увеличение риска поражения человека электрическим током, в том числе и в быту при возникновении различных аварийных ситуаций. Потребление электроэнергии в быту значительно увеличилось и растёт всё больше.

Дома, в школе, в больнице, на заводе, под землей, под водой – всюду оно рядом с человеком. Движет, согревает, освещает электричество. Электричество – очень полезно, но изучение «электричества» – это очень большая и сложная работа, которая требует больших знаний.

Не знание правил обращения с электричеством может привести к электрическим травмам и возникновению пожаров.

изучение литературных источников; практическая работа.

изучение и систематизация материала по данной теме.

без электричества представить нашу современную жизнь практически невозможно;

результаты исследования позволят больше узнать об окружающем мире, помогут в повседневной жизни.

Я предположил, что знания об электрических явлениях поможет нам:

Защититься от удара током

Судить о исправности или не исправности прибора

Правильно решать задачи по физике на экзаменах.

Далее я спланировал свою работу так чтобы найти ответы на следующие вопросы:

Где можно встретить электричество?

Какая сила тока опасна для человека?

Как можно получить источники электрической энергии?

Для того что бы ответить на эти вопросы, я:

изучил теорию вопроса;

побеседовал с представителями разных профессий (строителями, нефтяниками, школьными учителями биологии, технологии, химии, физики), проанализировал результаты, полученные в ходе опроса.

провел опыты по получению электрического тока из растений.

Электричество в нашей жизни

Ни один дом не сможет обойтись без электроэнергии. На работе, в быту и даже в хозяйстве вы и дня без нее не сможете.

Электроэнергия – это физический термин, который часто применяется в технике и в быту для определения количества электрической энергии, передаваемую генератором, в электрическую сеть. Под определение электричества применяют такие параметры как напряжение, частота и количество фаз, электрический ток. Электроэнергию вырабатывают на электростанциях, таких как ТЭС (теплоэлектростанция), ГЭС (гидроэлектростанция) и АЭС (атомные станции).

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

В повседневной жизни электричество сопровождает нас весь день. Ежедневно каждый второй человек включает телевизор, компьютер, а холодильник нуждается в электричестве постоянно. Оно существенно сокращает количество проделанного нами труда вручную. Электроэнергия применяется для освещения помещений и улиц, создания микроклимата (вентиляторы, ионизаторы, кондиционеры, приборы для отопления), хранения продуктов питания (морозилки, холодильники), приготовления пищи (плиты, СВЧ печи, соковыжималки, кофеварки, кухонные комбайны т. д.), уборки квартиры (пылесосы), стирки и сушки белья (стиральные машины, электросушилки и утюги).

На заводах или фабриках в электроэнергии нуждаются постоянно. Оно приводит в действие станки, электромашины, компьютеры и т. д. Электричество снабжает дома, при помощи трансформаторных подстанций.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Молния — электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Сила тока в разряде молнии на Земле достигает 10—500 тысяч ампер, напряжение — от десятков миллионов до миллиарда вольт.

Электричество и человек

Тело человека способно вырабатывать электроэнергию, в частности на такой подвиг способна сердечная мышца. Благодаря таким сердечным способностям, с помощью электрокардиограммы, можно измерить ритм биения сердца.

А вот в период, когда человек только начинал заниматься исследованиями электрических явлений, но при этом еще даже не знал о существовании специальных приборов, он ради науки приносил в жертву свое здоровье, а иногда и жизнь. Так однажды ученый-физик В. Петров, который исследовал явление электрической дуги, пошел на такую жертву и срезал слой кожи на пальцах, чтобы была возможность лучше чувствовать слабые токи.

Еще древние римляне додумались лечить болезни с помощью электричества. Они нашли выход, как можно избавиться от головной боли. Для этих целей, на голову больного накладывали электрического угря. Конечно, сказать об эффективности такого лечения очень трудно, так как больной после такой процедуры уверял, что все прошло, или же боялся признаться, что у него болит голова.

Также интересным явлением из области электричества, является то, что при попадании в человека разряда молнии, у него на теле появляется довольно таки особенный рисунок, который еще называют фигурой Лихтенберга.

Осторожно — электричество!

Однако многие из нас даже не задумываются о том, что электрический ток безопасен только до тех пор, пока находиться под «замком» изоляции проводов и, вырвавшись оттуда, может стать безжалостным зверем готовым уничтожить все на своем пути. Электрический ток опасен тем, что человек не может определить своими органами чувств его наличие и зачастую поражение током для человека становиться полной неожиданностью.

Электрический ток бывает двух видов постоянным и переменным. Встретить постоянный ток можно, например, в батарейках или аккумуляторе автомобиля. Четкое разделение на «плюс» и «минус» определяют постоянный ток. С переменным током все несколько сложнее. Дело в том, что полярность при переменном токе меняется с определенной частотой, то есть «плюс» и «минус» меняются местами. Например, стандартом для нашей электрической сети является частота в 50 герц, то есть «плюс» и «минус» поменяются местами 50 раз в секунду. Токи по-разному влияют на человеческий организм.

Поражения электрическим током можно получить при использовании электробытовых приборов и от ударов молнии, поскольку человеческий организм хороший проводник тока. Нередко травмы получают, наступив на лежащий на земле провод или отодвинув руками отвисшие электрические провода.

Напряжение свыше 36 В считается опасным для человека. Если через тело человека пройдет ток всего лишь в 0,05 А, он может вызвать непроизвольное сокращение мышц, которое не позволит человеку самостоятельно оторваться от источника поражения. Ток в 0,1 А смертелен.

Ещё опаснее переменный ток, поскольку оказывает более сильное воздействие на человека. Этот наш друг и помощник в ряде случаев превращается в беспощадного врага, вызывая нарушение дыхания и работу сердца, вплоть до его полной остановки. Он оставляет страшные метки на теле в виде сильнейших ожогов. Первое, что нужно знать об электричестве это то, что сила повреждения человеческого организма зависит не от напряжения, а именно от тока, примером тому могут служить, популярные сегодня, мио стимуляторы для наращивания мышц и сжигания жировых клеток. Напряжение в данных приборах может достигать 1000 вольт, однако сила тока настолько мала, что человек получает только стимуляцию мышц.

Чтобы не допустить несчастного случая:

Необходимо знать, что смертельно опасно не только касаться, но и подходить ближе чем на 5-8 м к лежащему на земле оборванному проводу воздушной линии.

Электричество в природе

Каждый из нас часто наблюдал за птицами , беззаботно сидящими на электрических проводах. Почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто — они сидят на проводе, но ток через птицу не течет, но, если птичка взмахнет крылом, одновременно касаясь двух фаз — умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и нельзя при этом коснуться стены или металла.

Многие животные имеют такую способность, как вырабатывать электрический ток. Обороняясь от врагов, электрический угорь способен выработать электрический ток, который имеет напряжение до 500 В.

Электрический скат – способен создать электрический заряд. Напряжение составляет от 8 до 220 вольт. Разряд электрического ската для человека не так опасен, как для мелких рыб, но все же оказывает пагубное слияние на здоровье и жизнедеятельность человека. Мелкие разряды отразятся сильной болью, более сильные могут парализовать конечности тела, самые мощные разряды могут привести к летальному исходу. Для сохранения жизни и здоровья человеку рекомендуется избегать купания в тех местах, где обитает электрический скат, а также ни в коем случае не взаимодействовать с рыбой на суше и в водной среде. Тем не менее, известно, что электрического ската в Древней Греции активно использовали как средство от боли, как болеутоляющее при операциях и родах. Электрического ската прикладывали к месту боли, с помощью электрического напряжения болезненные ощущения проходили. Такое использование морских электрических скатов обусловило появление современных электрических медицинских приборов.

Читайте также:  Ожог пальцев электрическим током

«Электрический язык» пчелы. Известно, что некоторые насекомые — своего рода «живые барометры». Они могут заранее определять перемену погоды. Это связано с их способностью воспринимать изменения электрического состояния атмосферы. В период хорошей погоды напряженность электрического поля у поверхности Земли составляет около 1,3 В/см, а перед грозой или пылевой бурей может возрастать до 10 В/см. Возрастает и величина наводимого тока, который раздражает насекомое и побуждает его искать укромное место от непогоды. Эта чувствительность к переменным электрическим полям у различных видов насекомых неодинакова. Например, максимальная чувствительность к электрическому полю медоносных пчел находится на частоте 500 герц и составляет 4—5 В/см. А осы начинают возбуждаться, когда напряженность поля достигает всего 0,3—0,5 В/см.

Растения и электричество . Изучению «растительного электричества» в XIX в. было уделено немало внимания. Первые попытки обнаружения токов действия у растений предпринимались именно на тканях, способных к сокращению. Токи действия в растительных тканях были обнаружены в опытах с черешками мимозы, способными совершать механические движения под влиянием внешних раздражителей. Однако наиболее интересные результаты были получены в конце прошлого века Бердон-Сандерсоном, исследовавшим токи действия в закрывающихся листьев насекомоядного растения – так называемой венериной мухоловки. Оказалось, что в момент сворачивания края листа в его тканях возникают точно такие же токи действия, как в мышце при сокращении.

Практическая часть

Сочные фрукты, молодой картофель и другие пищевые продукты могут служить питанием не только для людей, но и для электроприборов. Чтобы добыть из них электричество, понадобятся оцинкованный гвоздь или шуруп и отрезок медной проволоки. Чтобы зафиксировать присутствие электричества, нужен бытовой мультиметр, а более наглядно продемонстрировать успех поможет светодиодный светильник, рассчитанные на питание от батареек.

Как получить электричество из картофеля.

Почти в любом овоще или фрукте есть электричество. Для создания генератора тока понадобится: картофель 1 шт; зубочистки 2 шт; соль; чайная ложка; провода 2 шт; зубная паста.

Провода необходимо зачистить. Картофель разрезать ножом на 2 половинки. Провод протянуть через одну половинку картофеля. Используя чайную ложку сделать во второй половинке картофеля ямку — размер ее равен размеру ложки.

Смешать с солью зубную пасту и заполнить ею ямку, сделанную в разрезанном картофеле. Соединить две половинки картофеля зубочистками.

Для добычи напряжения необходимо на один из проводов намотать кусочек ваты. Подождать две минуты (пока батарея зарядиться).

Затем друг к другу поднести провода до появления искры.

Как получить ток из лимона.

Разомнем лимон в руках, чтобы разрушить внутренние перегородки, но не повредить кожуру. Воткните гвоздь (шуруп) и медную проволоку так, чтобы электроды располагались как можно ближе друг к другу, но не соприкасались. Чем ближе будут находиться электроды, тем меньше вероятность, что они окажутся разделены перегородкой внутри фрукта. В свою очередь, чем лучше ионный обмен между электродами внутри батарейки, тем больше ее мощность.

Такие опыты я провел с другими фруктами и овощами. Результаты измерений напряжения я занес в таблицу.

t1571555326aa.jpg

Измерения показали, что самое высокое напряжение дает груша, самое низкое – киви. Удивительно, что лимонная батарейка слабее других источников (кроме киви), хотя в сети Internet в основном рассматривается именно лимон как сырье для источников питания .

Работа, которой я занимался, показалась мне очень интересной. Я смог ответить на все интересовавшие меня вопросы. Так, проведенные эксперименты подтверждают гипотезу о возможности создания источников питания из фруктов и овощей.

Такие батарейки могут использоваться для работы приборов с низким потреблением энергии. Из использованных фруктов и овощей лучшими источниками электрического тока являются лимон, картофель, лук репчатый.

Я убедился в том, что физика наука экспериментальная. Я учился делать наблюдения, выдвигать гипотезы, проводить эксперимент, делать выводы. Я научился определять напряжение внутри «вкусной» батарейки и силу тока, создаваемую ею. Мне очень понравилось ставить эксперименты самому. Оценивать получившийся результат. Я заметил, что не всегда эксперимент удается, хотя теоретически так должно быть. Например, мне не удалось зажечь лампочку на 3,5 В, поэтому буду пробовать еще, пока не добьюсь результата ​​​​​​​

Для того что бы хорошо выполнить проект по физике мне понадобились знания

русского языка и литературы — грамотно оформить проект, интересно изложить содержания проекта;

физики, биологии, химии – знакомство с источниками электрического тока.

Выбор идеи и обоснование проекта. Я выбрал именно эту тему потому что в будущем она может мне пригодиться при сдаче экзаменов.

Новизна. Я узнал, что такое электричество и где мы можем ее встретить.

Небольшие поселки, микрорайоны, мини-заводы, больницы и школы – все эти социальные здания часто становятся заложниками разных причин и обстоятельств, по которым могут ограничивать подачу электроснабжения. Люди уже настолько привыкли к цивилизованным, комфортным условиям, что вряд ли бы согласились отказаться от них. Научные изобретения постоянно удивляют нас и делают нашу жизнь все более беззаботной.

Источник

Исследовательская работа на тему «Откуда берется электричество»

hello_html_4b4cd9bc.jpg

ДОНЕЦКАЯ НАРОДНАЯ РЕСПУБЛИКА

ОТДЕЛ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ ПЕТРОВСКОГО РАЙОНА ГОРОДА ДОНЕЦКА

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
« ГИМНАЗИЯ № 107 ГОРОДА ДОНЕЦКА»

Отделение: окружающий мир

Секция: неживая природа

ОТКУДА БЕРЕТСЯ ЭЛЕКТРИЧЕСТВО ?

Коробка Вера Владимировна,

учащаяся 2-Б класса

учреждения «Гимназия №107 города Донецка»

Чава Светлана Борисовна

учитель начальных классов

учреждения «Гимназия №107 города Донецка»

Цели и задачи исследования

Методы проведения исследования

2.2. Природа электричества и электрического тока

2.3. Знакомство с принципом работы батарейки

2.4. Как электричество попадает в наш дом

В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Я спрашивала у папы, почему горят лампочки, откуда берется электрический ток в розетке, как мои игрушки работают от батарейки. Меня заинтересовала тема «Откуда берется электричество». И я решила, что обязательно должна разобраться с возникающими у меня вопросами об электричестве.

Моя работа построена на гипотезе о том, что в батарейках и домашней технике используется разное электричество.

Для того, чтобы проверить свою гипотезу я определила цель исследования и провела ряд опытов.

Цель работы : Изучить электрические цепи с разными видами тока.

Для достижения поставленной цели мной по порядку были изучены все интересующие меня вопросы.

Задача: 1. Изучить природу электричества и электрического тока.

2. Ознакомиться с принципом работы батарейки.

3. Узнать, как электричество попадает в наш дом.

Для их решения я выполнила следующую работу:

Спросила у папы и провела с ним опыты;

Изучила нужную информацию в детской энциклопедии;

Искала статьи в Интернете;

Смотрела познавательные мультфильмы об электричестве.

Методы и приемы исследования: наблюдение и проведение опытов.

Практическая значимость: Результаты исследования позволяют больше узнать об окружающем мире, помогают в повседневной жизни.

Оборудование: 1. Детский электрический конструктор.

ОСНОВНАЯ ЧАСТЬ

Из мультфильма “Смешарики: Пин-Код “Электричество” мне стало известно, что еще в древней Греции греками было замечено, что если янтарь потереть о шерсть, он начинает притягивать к себе легкие предметы, находящиеся поблизости.

Силу, притягивающую к себе предметы, греки стали называть электричеством . Янтарь на древнегреческом языке называется электроном . От “электрона”- янтаря образовали слово электричество. Вот так произошло первое знакомство людей с электричеством.

Природа электричества и электрического тока

Сейчас ученые доказали, что все, что нас окружает, состоит из элементарных частиц протонов и электронов , у которых есть удивительное свойство, они имеют электрический заряд.

Протон – это положительно, а электрон отрицательно заряженная частица (рис.1)

hello_html_2e8a775f.png

Рис.1. Протон и электрон

При трении янтаря о шерсть электроны перескакивают из шерсти на янтарь. В результате чего шерсть, потеряв часть электронов, становится заряжена положительно, а янтарь отрицательно. Отрицательно и положительно заряженные частицы начинают притягиваться друг к другу (рис.4). Такой вид электричества называют статическим. Если на одном проводнике возникает переизбыток электронов, то под действием электрических сил они устремляются туда, где электронов не хватает. Такой поток электронов и называют электрический ток.

Я попробовала провести эксперимент, рассказанный в мультфильме, о получении статического электричества (прил.1).

Для проведения опыта нам потребуется:

Мелко нарезанная бумага.

Если потереть линейку о шерсть, а потом поднести к бумажным кусочкам, то они притянутся к линейке. Почему так происходит, мы уже знаем. Электроны с линейки “перескочили” на шерсть, и линейка притянула к себе бумагу, пытаясь “захватить ” с нее электроны.

hello_html_7b767db9.jpg

Рис.2. Опыт с линейкой

Я сделала вывод, что линейка наэлектризовалась, в результате чего в ней возникло статическое электричество.

Выводы из эксперимента :

Одинаково заряженные тела отталкиваются (рис.3), противоположно заряженные тела притягиваются (рис.4).

hello_html_m8b4aeed.pnghello_html_mba0e06c.png

Рис. 3. Отталкиваются Рис.4. Притягиваются

Электричество, полученное в результате потери равновесия заряженных частиц, называют статическим.

Когда много-много электронов “бегут” по проводнику в одном направлении, возникает электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц.

Знакомство с принципом работы батарейки

Электричество может возникать не только при трении. Причиной возникновения может быть и химическая реакция. Так устроена привычная нам батарейка.

Первая батарейка появилась более чем 200 лет назад. Изобрел ее Алессандро Вольто.

Батарейки бывают разные. Круглые, квадратные, прямоугольные. (рис.5)

hello_html_22029907.png

Рис. 5. Какие бывают батарейки.

Я узнала о строении пальчиковой батарейки и расскажу вам про нее. Батарейку назвали так, потому что она похожа на палец. Снаружи на ней я увидела с одного конца нарисован знак “плюс”, с другого знак “минус”. (рис.6)

hello_html_49dd38c1.png

Рис.6. Пальчиковая батарейка.

Самая простая электрическая цепь состоит из:

Потребитель электрической энергии (лампочка или электроприборы)

Замыкающее устройство (выключатель или кнопка)

С помощью простой электрической цепи работают мои игрушки.

Для наглядности мы с папой собрали такую электрическую цепь (прил.2) (рис.7,8).

hello_html_m3d85b814.jpghello_html_m63038c50.jpg

Рис.7. Электрическая цепь Рис.8. Электрическая цепь

hello_html_m6e7c2290.png hello_html_686a5962.png

Рис.9. Так выглядит настоящая электросхема

Мы решили провести еще один эксперимент и сделать домашнюю, самодельную батарейку (прил.3).

Для этого нам понадобилось:

— прочное бумажное полотенце;

— 2 изолированных медных провода.

Как проводился опыт:

Растворили в воде немного соли.

Нарезали бумажное полотенце и фольгу на квадратики чуть крупнее монет.

Читайте также:  Определите силу тока короткого замыкания батареи если при силе тока 1 а она отдает

Намочили бумажные квадратики в соленой воде.

Положили друг на друга стопкой: медную монету, фольгу. Снова монету, кусочек бумаги и так далее несколько раз. Сверху стопки должна быть бумага, внизу – монета (рис. 10).

Зачищенный конец одного провода подложили под стопку, другой – подсоединили к лампочке. Один конец второго провода положили на стопку сверху, второй – присоединили к лампочке.

hello_html_m60cfce64.jpg

Рис.10. Опыт с монетами

Лампочка не загорелась, диод горел еле-еле, поэтому мы решили провести еще один опыт с помощью уксуса (прил.4).

Для этого нам потребуется:

Коробки от “ киндеров ” .

Сначала мы соединили саморез и медный провод как на рис.11

hello_html_420276aa.pnghello_html_3c804fa0.png

Рис.11. Саморез и медный провод

Поставили коробки от “киндеров” в ряд, налили в них уксус и вставили в каждый “киндер” саморез. Как на рисунке 12.

hello_html_459cd4ce.pnghello_html_4b0e9a8d.png

Рис.12. Этап 1

Подсоединили с одной стороны провод к медной проволоке, с другой стороны к саморезу (рис.13).

hello_html_m6d1e178f.jpg

Рис.13. Этап 2

Подключили провода к лампочке и она начала светится (рис.14). Значит у нас получилось самим сделать батарейку.

hello_html_23cb86c3.jpg

Рис. 14. Этап 3

Так же ток возникает во фруктах и овощах. Я провела опыты с лимоном и картошкой (прил.5).

В лимон и картошку воткнула медную и цинковую пластины и измерила напряжение вольтметром (рис.15,16).

hello_html_m568a204.jpghello_html_m5bbe2922.jpghello_html_me9c9b38.jpg

Рис.15. Опыт с лимоном

hello_html_m36e3faf9.jpghello_html_7d511d0f.jpg

Рис. 16. Опыт с картошкой

Вольтметр показал, что в лимоне и в картошке возник электрический ток с примерно одинаковым напряжением.

Трех лимонов мне оказалось достаточно, чтобы светодиод потихоньку загорелся без дополнительных источников тока. Добавив еще один лимон, диод начал гореть в полную силу (рис.17), но лампочка, как и предыдущих опытах, не загорелась.

hello_html_2af65bd6.png

Рис.17. Опыт с лимоном

В опыте с картошкой я взяла 12 картофелин, но лампочка все равно не загорелась, светился только диод (рис.18).

hello_html_m16271488.jpghello_html_m74cdc884.jpg

Рис.18. Опыт с картошкой

При проделывании всех опытов я сделала вывод, что электрический ток появляется в результате химической реакции между металлом и какой-нибудь кислотой. Таким образом, можно сказать, что батарейка это устройство, производящее электроэнергию. Но одной батарейки недостаточно, чтобы лампочка светилась. Для этого необходимо составить замкнутую электрическую цепь. Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Как электричество попадает в наш дом

Современному человеку электричество необходимо, чтобы работали станки на заводах, ездили поезда, трамваи. А дома – чтобы работали различные приборы. Но откуда и как к нам в дом попадает электричество. И вот, что я узнала.

Электричество для нашего дома производится на электростанции Зуевская ГРЭС.

Дальше электричество движется по линиям электропередач под сильным напряжением до 100 тысяч вольт.

Потом напряжение попадает в трансформаторы, чтобы понизиться и стать пригодным для домашних приборов.

Из трансформатора электричество попадает в наш дом.

Для получения такого большого количества электроэнергии строят электростанции. Ток на них получают с помощью особого устройства – генератора. Когда он крутится, то вырабатывается ток. Чтобы привести в действие генератор используют разные виды энергии.

На тепловых электростанциях (рис.19) электроэнергия получается от сгорания топлива (уголь, газ, мазут).

hello_html_m944b32.png

Рис. 19. Тепловая электростанция

Если генератор приводит в движение энергия падающей воды, то такая электростанция называется гидроэлектростанция (рис.20).

hello_html_2675db44.png

Рис. 20. Гидроэлектростанция

Еще бывают атомные электростанции (рис.21), на которых используется энергия, выделяемая при ядерной реакции.

hello_html_m21a2fa54.png

Рис. 21. Атомная электростанция

Но большие электростанции вырабатывают ток, который называется переменным . Он течет не по прямой, а очень быстро колеблется. Батарейка вырабатывает ток, который течет прямо без колебаний. Его называют постоянным током . Когда вы нажимаете на выключатель лампы или какого-нибудь прибора, то электрический ток, пришедший от генератора, начинает течь по проводам, и прибор начинает действовать, а лампочка – светиться.

Источник

Исследование электрического тока

Описание разработки

Цель урока: Вспомнить, обобщить и систематизировать знания об электрическом токе и характеризующих его величинах, полученных в VIII классе.

Задачи урока:

а) воспитательная: продолжить формирование мировоззрения; показать, что понятия дисциплины не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой взаимосвязаны.

б) общеобразовательная: продолжить формирование навыков работы с книгой, проявления самостоятельности, трудолюбия, внимания, аккуратности, эстетических навыков при оформлении записей, построении графиков.

в) развивающая: продолжить совершенствовать умение и навыки работы с лабораторным оборудованием, развитие речи, умение анализировать, обобщать, классифицировать.

Оборудование: амперметры, вольтметр, реостат, набор батареек, соединительные провода.

ТСО: интерактивное оборудование.

Ход урока

Организационный этап. Вступительное слово учителя.

Ребята, мы изучили одну из глав темы «Постоянный ток», которая называется «Электростатика». Мы рассмотрели простейший частный случай неподвижных заряженных тел – электростатику. Так для чего нам нужны знания по данной теме? (Ответы учеников). Все правильно, и я делаю вывод: неподвижные заряды редко используются на практике. Для того чтобы заставить заряды служить нам, их нужно привести в движение – создать электрический ток.

Сегодня на уроке мы с вами вместе будем размышлять и думать, не боясь ошибиться. В одном журнале мне встретились такие слова: «Дорога к знанию? Ну что же, её легко понять. Ответить можно сразу: Вы ошибаетесь, и ошибаетесь, и ошибаетесь опять, но меньше, меньше с каждым разом».

Актуализация знаний. Сегодня на уроке мы с вами вспомним основной материал по теме «Электростатика»

Фронтальный опрос (работа на интерактивной доске):

  1. В пространстве в любом веществе (теле) присутствуют ……..(эл. заряды)
  2. В замкнутой системе сумма всех зарядов………(остается постоянной)
  3. Эл. заряды создают в пространстве……….(эл. поле).
  4. Какие виды полей вы знаете? (однородное, электростатическое)
  5. Эл. заряды посредством эл. поля между собой….(взаимодействуют) по закону…(Кулона)
  6. Силовой характеристикой эл. поля является….(напряженность)
  7. Напряженность точечного заряда, заряженного шара можно рассчитать используя закон….(Кулона)
  8. Энергетической характеристикой эл. поля является….(потенциал)
  9. Наиболее важное значение имеет не потенциал а …….(разность потенциалов)
  10. Если на концах проводника создать разность потенциалов то в проводнике возникнет….(эл. ток)
  11. Для того чтобы эл. ток существовал длительное время необходимо поддерживать разность потенциалов при помощи …..(источников тока)

Работа индивидуальная по карточкам.

Найдите соответствие между параметром и единицей измерения:

Источник



Научно-исследовательский проект «Его величество — электричество»

Научно-исследовательский проект
«Его величество — электричество»

Цель:
Узнать больше об электричестве и его роли в жизни человека.

Задачи:
Изучить информацию об электричестве.
Получить знания о пользе электричества.
Познакомиться со статическим (безопасным) электричеством.
Освоить технику безопасности при обращении с электроприборами.
Исследовать электричество с помощью опытов.
Изобрести собственный электрический прибор.

Гипотеза:
Я предположил, что:
1. Электричество очень полезно;
2. Неправильное обращение с электроприборами может быть опасным;
3. Можно самим изобрести электрический прибор.

Актуальность работы заключается в том, что современная жизнь не возможна без электричества. Любое производство, освещение улиц и домов, работа медицинского и бытового оборудования и многое другое — зависит от наличия электричества. Но если же с ним неправильно обращаться, оно может стать опасным для жизни.

Методы исследования:
1. Изучение специальной литературы.
2. Просмотр видеороликов.
3. Наблюдение.
4. Эксперимент.
5. Опыт.
6. Анализ полученных данных.
7. Обобщение.
Что такое электричество?

На протяжении многих веков люди не подозревали о существовании электричества. А молния воспринималась как проявление необъяснимых божественных сил. Как же удавалось людям, живущим в окружении электрических и магнитных полей, совершенно их не замечать? Это происходило потому, что свободное электричество в природе встречается очень редко. Древние греки заметили, что если потереть кусочек янтаря шерстью, он будет обладать способностью притягивать легкие предметы. Янтарь по-гречески называется электроном, и поэтому вещества, приведенные в данное состояние, стали называть наэлектризованными. Почему возникает это явление, греки объяснить не могли.
Первые шаги к пониманию природы электричества были сделаны в середине XVIII века, когда французский физик Кулон открыл закон о взаимодействии электрических зарядов. Электрический заряд возникает при избытке или недостатке электрически заряженных частиц. Любое тело, заряженное отрицательно, например дождевое облако, расческа, стеклянная палочка, испытывает недостаток протонов, так как в нем преобладают электроны. И наоборот, тела, заряженные положительно, содержат избыток протонов. Когда общее количество протонов и электронов одинаково, то тело не имеет электрического заряда.
Упорядоченное движение свободных электрически заряженных частиц называется электрическим током.
В конце XVIII века итальянский физик Алессандро Вольта создал первый источник тока и дал физикам возможность проводить опыты с электрическим током.
Получают электричество на теплоэлектростанцях, атомных электростанциях, гидроэлектростанциях. Оно может возникать из солнечной энергии, падающей воды, специальных устройств — генераторов, либо получаться при возникновении какой-либо химической реакции. В целях хранения изобрели аккумуляторы и электрические батареи.
Силу электрического тока можно измерить. Единица измерения силы тока — Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика – Андре Ампер.

Где живет электричество
Электрические явления были непонятны и опасны для жизни, они вселяли страх. Но постепенно опыт накапливался, и люди начали понимать некоторые из них, научились создавать и использовать электричество в своих нуждах. Мы знаем, где оно живет: в проводах, подвешенных на высоких мачтах, в комнатной электропроводке и еще в батарейке карманного фонаря. Но все это электричество домашнее, ручное. Человек его изловил и заставил работать. Оно потрескивает в никелированном теле электроутюга. Сияет в лампочке. Гудит в электродвигателях. Весело распевает в радиоприемниках. Да мало ли что еще может делать электричество.
Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока. Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую …
Ну, а есть ли на свете электричество дикое, неприрученное? Такое, которое живет само по себе? Да, есть. Оно вспыхивает ослепительным зигзагом в грозовых тучах. Оно светится на мачтах кораблей в душные тропические ночи. Но оно есть не только в облаках, и не только под тропиками. Тихое, незаметное, оно живет всюду. Даже у нас в комнате. Мы часто держим его в руках и сами об этом не знаем. Но его можно обнаружить.

Читайте также:  Физиотерапия при остеохондрозе поясничного отдела позвоночника током как называется

Статическое электричество. Его вред и польза.
Статическое электричество — одно из интереснейших явлений природы. Действие статического электричества основано на том, что все предметы имеют положительный электрический заряд и отрицательный. Положительно и отрицательно заряженные объекты притягиваются друг к другу, как магнит, – поскольку один из них желает сбросить лишние электроны, а другой, наоборот, получить их. Статическое электричество может возникнуть от ходьбы по шерстяному ковру, при надевании свитера, расчесывании волос, контакте с полиэтиленом или пенопластом. Статическое электричество относительно безопасно для человека. Когда статическое электричество становится достаточно мощным, электроны перескакивают с одного предмета на другой в таком количестве, что это порождает видимую электрическую искру (электрический разряд).
А если одним из объектов, между которыми перескакивают электроны, являетесь вы, то вы почувствуете легкий «удар».
Молния, между прочим, представляет собой гигантскую электрическую искру, электрический разряд в результате накапливания статического электричества в туче во время грозы. Естественно, сила таких зарядов очень высока и молнии смертельно опасны для человека.
При правильном использовании статическое электричество может приносить немало пользы. Чтобы очистить воздух от пыли, сажи, кислотных и щелочных паров, прибегают к электростатическим фильтрам. Рыба будет коптиться быстрее, если ее поместить в специальную электрокамеру, где конвейер с продуктом заряжен положительно, а электроды — отрицательно. Работа ксероксов и лазерных принтеров также основана на действии статического электричества: положительные заряды образуют на барабане изображение оригинала и притягивают частицы краски, создавая картину. Затем порошок переносится на лист заряженной бумаги, где горячие валики укатывают ее в бумагу.

Опыты со статическим электричеством
Наглядно феномен статического электричества можно объяснить на основе опытов.
А как вы думаете, в шарике есть электричество? А я вам сейчас докажу, что в воздушном шарике живёт безопасное электричество.

1. «Бабочка»
Для этого нам понадобится квадратный лист папиросной бумаги размером 10х10 см. На нем необходимо нарисовать бабочку и аккуратно вырезать. Далее тело бабочки нужно приклеить к плотному картону. Зарядив воздушный шар, можно заставить двигаться крылья. Для этого производят трение шарика о волосы или шерстяной шарф. Шарик приобретет заряд. Поднося шарик к крыльям, избыточный заряд шарика будет притягивать к себе крылья. Убирая шарик далеко от крыльев, они снова будут опускаться. Многократным повтором таких движений можно имитировать полет бабочки.
Вывод: при трении шарик приобретает электрический заряд. А избыточный заряд шарика притягивает к себе крылья бабочки.

2. «Волосы дыбом»
Воздушный шар трем о шерстяной шарф, дотрагиваемся до волос. Волосы «оживают», становятся «дыбом».
Вывод: волосы «оживают» под действием статического электричества, возникающего из-за трения расчески с шерстью.
«Золушка»
Высыплем на тарелку перец и соль и тщательно их перемешаем. Потрем шарик о шерстяной шарф, затем поднесем его к смеси соли и перца. Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. Следовательно, часть перчинок, ближайшая к шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах.
Вывод: соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.
В результате контакта не во всех предметах возможно разделение статических электрических разрядов.

Проводники электричества
Вещества, по которым передаются электрические заряды, называют проводниками электричества.
Хорошие проводники электричества — металлы, почва, растворы солей, кислот или щелочей в воде, графит. Тело человека также проводит электричество.
Из металлов лучшие проводники электричества серебро, медь и алюминий, поэтому провода электрической сети чаще всего делают из меди или алюминия.
Вещества, по которым заряды не передаются, называют непроводниками (или изоляторами). К хорошим изоляторам относятся камень янтарь, фарфор, резина, различные пластмассы, шелк, шерсть, керосин, масла. Изоляторы (например, резиновую оболочку кабеля) применяют для изоляции проводов, по которым течет ток, от внешних предметов.
Используя набор «Юный физик» мы собрали простую электрическую цепь, которая состоит из батарейки, проводов и лампочки. При помощи них мы наглядно убедились, какие предметы проводят электрический ток, а какие нет. Для эксперимента мы взяли: резиновый воздушный шарик, пластмассовую ложку, кусок древесины, кусок шерстяной ткани, металлическую монетку и питьевую воду. При контакте одного конца провода к воздушному шарику, пластмассовой ложке, куску древесины, куску шерстяной ткани лампочка не загоралась, так как эти предметы не проводят электрический ток, а при контакте с металлической монеткой — лампочка загорелась. Это говорит, что металл проводит электрический ток.
То же самое мы проделали с водой: опустили провода в чистую воду, лампочка не зажглась. Добавили в воду соль, тщательно перемешали. Цепь замыкается, лампочка горит. Значит, чистая вода не проводит ток, а неочищенная является проводником электричества.

Изготовление электрического прибора
Мы с братом тоже изобрели электрический прибор, который называется «Сигнализатор затопления». Сигнализатор состоит из корпуса, динамика, батарейки и двух проводов. В самом начале мы соединили все элементы. Электронная часть находится в коробе, в который вмонтировали динамик. Провода, которые будут контактировать с водой оголили, чтобы они могли проводить электрический ток. Всю эту конструкцию помещаем в контейнер.
Вода является проводником для электрического тока. На этом основан принцип действия нашего сигнализатора. Поэтому когда мы наливаем в наш прибор воду, она попадает на два провода из устройства, происходит замыкание электрической цепи, и прибор издает звуковой сигнал.
Основное назначение сигнализатора — предупреждение о затоплении помещения. Такой прибор можно установить на полу на кухне или в ванной. В случае протечки мы сразу же об этом узнаем.
А также дополнительным свойством сигнализатора является проверка чистоты дистиллированной воды. Проверка основывается на том, что дистиллированная вода не пропускает электрический ток. Значит, если контакты опустить в ёмкость с дистиллированной водой, электрический ток не пойдёт по проводам, и сигнализатор не пропищит. Мы получили датчик чистоты дистиллированной воды.

Техника безопасности при обращении с электроприборами
Бытовые электроприборы облегчают труд женщин, сокращают время на выполнение домашних работ. При обращении с ними нужно строго выполнять правила безопасности. Нарушение этих правил может стать причиной несчастных случаев
1. Соблюдайте порядок включения электроприборов в сеть — шнур сначала подключайте к прибору, а затем к сети. Например, если вы ставите на зарядку мобильный телефон, то сначала подключите шнур к телефону, а затем вставляйте шнур в розетку. Отключение прибора произведите в обратном порядке.
2. Не вставляйте вилку в штепсельную розетку мокрыми руками.
3. Не пользуйтесь электроутюгом, плиткой, чайником, паяльником без специальных несгораемых подставок.
4. Опасно использовать электроприбор с поврежденной изоляцией шнура.
Если вы увидели оголенный провод, неисправный выключатель, розетку — сразу сообщите об этом взрослым.
5. Не прикасайтесь к нагреваемой воде и сосуду (если он металлический) при включенном в сеть нагревателе.
6. Не оставляйте без присмотра электронагревательные приборы, включенные в сеть.
8. Никогда не тяните за электрический провод руками.
9. Нельзя защемлять электрические провода дверями, оконными рамами. Нужно следить за тем, чтобы провода сильно не перекручивались, не соприкасались с батареями отопления, трубами водопровода, с телефонными проводами.
10. Приборы, в которых кипятят воду (электрочайники), нельзя включать в сеть пустыми. Их нужно наполнить водой не меньше чем на одну треть. Когда наливают воду в электрический чайник, они должны быть обязательно выключены.
Включать и выключать любой электробытовой прибор нужно одной рукой, не касаясь при этом водопроводных, газовых и отопительных труб.

Без электричества представить нашу современную жизнь практически невозможно. Электричество – это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник, ставим подогревать пищу в микроволновую печь, пользуемся лифтом, трудимся на предприятиях, в банках и больницах, учимся в школе, где тепло и светло. И везде «работает» электричество.
Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру.
Бережно относится к электричеству, экономить его нужно для того, чтобы уменьшить вредное воздействие на окружающую среду. Теплоэлектростанции используют уголь, газ или нефть, то есть невозобновляемые запасы полезных ископаемых, и выбрасывают углекислый газ в атмосферу. В случае с атомной электростанцией проблема заключается в тех радиоактивных отходах, которые еще не научились перерабатывать так, чтобы сделать их абсолютно безопасными для окружающей среды. Даже гидроэлектростанции, которые получают электричество за счет энергии падающей воды, вредят экологии: их строительство приводит к затоплению ценных сельскохозяйственных земель. Если каждый из нас будет экономить электроэнергию, внедряя энергосберегающие технологии или вовремя выключая свет, значительно снизится необходимая мощность электрических станций.

Таким образом, я:
Узнал больше об электричестве, о его роли в жизни человека.
Познакомился со статическим ( безопасным) электричеством.
Закрепил знания о технике безопасности при обращении с электроприборами.
Изобрёл собственный электрический прибор – сигнализатор затопления
Мне понравилось проводить опыты, эксперименты с электричеством, искать ответы на вопросы.
Оказывается, рядом с нами столько неизвестных нам явлений! Мы многое не знаем и не можем пока объяснить. Но думаем, что продолжим наши исследования по теме «Электричество» и, возможно, изобретём ещё один важный для человека электрический прибор!

Источник