Меню

Электромагнит постоянный ток или переменный ток

Основные понятия про электромагниты

Существуют определенные природные материалы и объекты, которые сами по себе обладают магнитными свойствами. Их называют естественными магнитами. Примерами естественного магнитного материала могут служить железные руды, насыщенные магнитными свойствами. Примером же естественного магнитного объекта выступает наша с вами планета Земля.

Естественные, они же постоянные, магниты обладают высокой остаточной магнитной индукцией, что позволяет им сохранять магнитные свойства на протяжении длительного времени.

Однако, более широкое распространение в промышленности, медицине и других отраслях нашли электромагниты — электрические аппараты, в которых магнитным полем можно управлять. В электроэнергетике применяются, кроме прочего, в реле, выключателях, генераторах.

При определенных условиях магнитные поля способны создавать поля электрические. Верно и обратное утверждение. В этом и кроется суть электромагнитов.

Классификация электромагнитов

Принято классифицировать электромагниты (ЭМ) по способу питания на электромагниты постоянного и переменного тока. ЭМ постоянного тока в свою очередь классифицируются на постоянного тока нейтральные и поляризованные. Также существуют ЭМ выпрямленного тока.

В нейтральных электромагнитах постоянного тока магнитный поток создается обмоткой постоянного тока. Величина магнитного потока зависит лишь от обмотки, не зависит от направления. Если величина тока равна нулю, то магнитный поток и сила притяжения также опускаются практически до величины нуля.

Поляризованные ЭМ постоянного тока характеризуются наличием двух независимых магнитных потоков — рабочего и поляризующего. Поляризующий поток создается постоянными магнитами или электромагнитами. Рабочий же поток создается под действием намагничивающей силы рабочей обмотки. При отсутствии тока на якорь магнита будет действовать сила притяжения от поляризующего потока. В отличие от нейтральных, в поляризованных электромагнитах их действие зависит не только от величины рабочего потока но и от его направления.

В электромагнитах переменного тока обмотка питается от источника переменного тока. Величина и направление магнитного потока изменяется во времени от нуля до максимума.

Далее другие возможные классификации

  • с последовательными (мало витков большого сечения) и параллельными (много витков малого сечения) обмотками
  • работающие в длительном, кратковременном или прерывистом режимах
  • быстродействующие, замедленно действующие и нормально действующие
  • с внешним притягивающим якорем, со втягивающимся якорем, с внешним поперечно движущимся якорем

Устройство электромагнитов

Несмотря на обширное, судя по описанной выше классификации, количество разнообразных вариантов электромагнитов, существуют определенные однотипные узлы, которые встречаются у всех ЭМ.

  • Катушка с расположенной на ней намагничивающей обмоткой
  • Подвижная часть электромагнита — якорь
  • Неподвижная часть — ярмо и сердечник

Между якорем и неподвижными частями существуют воздушные промежутки. Так вот, воздушные промежутки бывают полезными и паразитными. Полезные промежутки располагаются по возможному пути движения якоря. Паразитные промежутки лежат за пределами движения якоря.

Также существует понятие полюса. Полюсами называют поверхности магнитопровода, которые ограничивают полезный воздушный промежуток.

Конструктивные формы электромагнитов переменного тока не имеют множества вариантов, за счет того, что сердечник набирается из листов электротехнической стали. Это необходимо для борьбы с вихревыми токами.

Как работает электромагнит

Сам цикл работы ЭМ представляет собой следующую последовательность действий. Сначала в обмотку подается ток такой величины, при которой магнитные силы станут больше, чем силы удерживающие якорь в покое.

Далее произойдет отрыв якоря из состояния покоя и движение якоря в конечную точку полезного промежутка. Это первый этап.

На втором этапе якорь ЭМ подтянут и через него протекает ток. Как известно, ток создает термическое воздействие с течением времени. Поэтому время работы не должно превышать допустимое. На этом этапе сила тяги электромагнита максимальная.

Последний, Третий этап — аналогичен первому — ток уменьшается до нуля, магнитные силы становятся меньше сил, возвращающих якорь в состояние покоя, якорь отпадает. Далее электромагнит остывает.

Если характер его работы периодически повторяющийся, то за время до следующего цикла, ему необходимо успеть остыть.

Сравнение ЭМ постоянного и переменного тока

При выборе между электромагнитами на постоянном или переменном токе следует учитывать следующие особенности:

    Сила тяги. При одинаковом сечении полюсов средняя величина силы тяги в ЭМ на переменном токе (“ЭМ

тока”) будет вдвое меньше, чем в аналогичном на постоянном токе. То есть железо более эффективно используется в ЭМ на постоянном токе (“ЭМ = тока”)

  • Вес. Если же заданными константами являются сила тяги и ход якоря, то для получения электромагнита переменного тока потребуется вдвое больше железа и размеров, чем для ЭМ постоянного тока
  • Реактивная мощность. Если необходимо уменьшить потребляемую мощность “ЭМ = тока”, то достаточно увеличить его размеры. В случае же с “ЭМ

    тока” потребляемая при пуске реактивная мощность не может быть уменьшена путем увеличения размеров ЭМ
    Вихревые токи. В случае с “ЭМ

    тока” магнитопроводы выполняют шихтованными и разрезными для уменьшения влияния вихревых токов. Само же наличие потерь на вихревые токи и перемагничивание вызывает увеличение потребления электроэнергии и лишний нагрев. В случае же с “ЭМ = тока” данный пункт отсутствует

  • Быстродействие. Если взять ЭМ постоянного и переменного тока, то вторые будут более быстродействующие. Однако для “ЭМ = тока” внедряют специальные меры, которые могут сделать их более быстродействующими. При этом “ЭМ = тока” будут потреблять меньше энергии
  • Однако, в промышленности, вышеописанные недостатки “ЭМ

    тока” не вызывают особых препятствий на пути их использования.

    Сохраните в закладки или поделитесь с друзьями

    Источник

    Чем отличаются и где используются постоянный и переменный ток

    В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

    Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

    Чем отличаются и где используются постоянный и переменный ток

    Что такое электрический ток и напряжение

    Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

    • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
    • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
    • частота, измеряемая в герцах (Гц).
    Читайте также:  В каких случаях в проводнике может возникнуть индукционный ток

    Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

    Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

    Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

    Чем отличаются и где используются постоянный и переменный ток

    Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

    Что такое переменный ток

    Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

    Что такое постоянный ток

    Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

    Источники электрического тока

    Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

    Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

    Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

    Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

    Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

    Преобразование переменного тока в постоянный

    Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

    Чем отличаются и где используются постоянный и переменный ток

    Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

    В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

    Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

    Где используется и в чём преимущества переменного и постоянного тока

    Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

    Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

    Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

    Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

    Читайте также:  Как направлен ток в источнике энергии

    Обозначения на электроприборах и схемах

    Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

    Чем отличаются и где используются постоянный и переменный ток

    Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

    На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

    Почему переменный ток используется чаще

    Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

    Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

    Чем отличаются и где используются постоянный и переменный ток

    Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

    Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

    В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

    При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

    Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

    Чем отличаются и где используются постоянный и переменный ток

    Как устроен генератор переменного тока — назначение и принцип действия

    Что такое активная и реактивная мощность переменного электрического тока?

    Чем отличаются и где используются постоянный и переменный ток

    Что такое частотный преобразователь, основные виды и какой принцип работы

    Чем отличаются и где используются постоянный и переменный ток

    Что такое конденсатор, виды конденсаторов и их применение

    Чем отличаются и где используются постоянный и переменный ток

    Как условно обозначаются элементы на электрических схемах?

    Чем отличаются и где используются постоянный и переменный ток

    Что такое варистор, основные технические параметры, для чего используется

    Источник

    Принцип работы электромагнита

    Электромагнит — устройство и принцип работы

    Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него.

    Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

    Магнитные поля возникают в случае, когда весь набор электронов металлического объекта начинает вращаться в одинаковом направлении.

    В искусственных магнитах это движение обуславливается при помощи электромагнитного поля.

    Для постоянных электромагнитов данное явление считается натуральным.

    Обмотку для электромагнита выполняют из медных или алюминиевых изолированных проводов. Существуют и сверхпроводящие электромагниты. Магнитный провод делают из магнитно-мягкого материла, чаще всего стали (конструкционной, литой и электротехнической), чугуна и сплавов железа с кобальтом или никелем. Снижение потери на вихревой ток (ВхТ) осуществляется при помощи создания магнитопровода из множества листов.

    Общая характеристика

    Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах.

    Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки.

    Полярность электромагнита определяют по направлению тока.

    Механизм образования включает в себя наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника.

    Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.

    Увеличивать силу электромагнита, а точнее его поля, можно при помощи:

    • применения сердечников из «мягкого» железа;
    • применения больших чисел витков;
    • применения электрического тока в больших размерах.

    Электромагниты бывают следующих видов:

    • Нейтральные постоянного тока. В таком устройстве магнитный поток создается посредством постоянного электрического тока, пропущенного через обмотку. А значит, сила притяжения такого электромагнита варьируется в зависимости только от величины тока, а не от его направления в обмотке.
    • Поляризованные постоянного тока. Действие электромагнита подобного рода основано на наличии двух независимых магнитных потоков. Если говорить о поляризующем, то его наличие создается обычно постоянными магнитами (в редких случаях — дополнительными электромагнитами), и нужен он для создания притягивающей силы при выключенной обмотке. А действие такого электромагнита зависит от величины и направления электрического тока, который движется в обмотке.
    • Переменного тока. В таких устройствах катушка электромагнита питается электричеством переменного тока. Соответственно, с определенной периодичностью магнитный поток меняет свое направление и величину. А сила притяжения варьируется лишь по величине, из-за чего она «пульсирует» от минимального до максимального значения с частотой, которая имеет двукратную величину по отношению к частоте питающего ее электрического тока.
    Читайте также:  Что такое универсальные характеристики двигателей постоянного тока

    Магнитное поле, создаваемое катушкой

    Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит. Плунжер,находящийся внутри катушки, притягивается к её центру с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера.

    Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

    Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

    Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера.

    Конструкция линейного соленоида вытяжного типа

    Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

    Вращательный соленоид

    Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

    Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

    Источник

    

    Отличие электромагнита постоянного тока от электромагнита переменного тока, назначение и принцип работы короткозамкнутого витка

    Магнитная система электромагнитов постоянного и переменного тока различная. У электромагнита постоянного тока относительно небольшой зазор d, а сам магнитопровод может быть выполнен из сплошного цельного куска электротехнической стали.

    У магнитов переменного тока система шихтованная, набранная из тонких листов электротехнической стали.

    Так как через катушку протекает переменный ток, то и магнитный поток Ф изменяет свое направление и в какие то моменты времени становится равным нулю. В этом случае противодействующая пружина будет отрывать якорь от полюсного наконечника и возникнет дребезг якоря. Для устранения этого явления используются либо многофазовые электромагниты, либо короткозамкнутое кольцо, которое устанавливается на расщепленной части полюсного наконечника. Так как у катушек переменного тока определяющим является индуктивное сопротивление, а оно зависит от индуктивности, то в первоначальный момент , когда рабочий зазор d максимален и индуктивность минимальна, ток якоря максимален, то есть имеется бросок тока через катушку. При минимальном зазоре, когда якорь соприкоснется с полюсным наконечником, индуктивность возрастет и ток возрастет.

    В электромагнитах переменного тока магнитное сопротивление зависит не только от , l, S сердечника, но и от потерь в стали и наличия короткозамкнутых обмоток, расположенных на сердечнике.

    Катушка электромагнита постоянного тока выполняется достаточно высокой и тонкой, для улучшения условий охлаждения (потери мощности на постоянном токе только на чисто активном сопротивлении проводника).

    Катушка электромагнита переменного тока выполняется более низкой, т.к. кроме потерь мощности в активном и индуктивном сопротивлении катушки имеются потери мощности на перемагничивание сердечника.

    Как известно в электромагнитах переменного тока ток в обмотке сильно зависит от положения якоря. В клапанных элек­тромагнитах ток в притянутом состоянии в десятки раз меньше, чем при отпущенном якоре. Это затрудняет создание максимальных реле напряжения на базе клапанной системы, так как при напря­жениях, близких к напряжению срабатывания, через обмотку про­текает большой ток, выделяется мощность, в сотни раз превышаю­щая мощность в обмотке при притянутом якоре. Приходится сильно увеличивать габариты катушки, чтобы рассеивать большую мощ­ность, выделяемую при отпущенном якоре. Большим преимуществом реле серии ЭН является относительно небольшое изменение маг­нитной проводимости, в результате чего ток в обмотках мало ме­няется при повороте якоря. Это дает возможность иметь малые га­бариты обмоток.

    Если отрывное усилие электромагнита будет РОТР, то дважды за период в точке А (рис. 6, в) якорь электромагнита будет от­падать, а в точке В — снова притягиваться, т. е. будет вибрировать с двойной частотой. Вибрация приводит к износу магнитной сис­темы и сопровождается гудением.

    ­

    Рис.6. Кривая изменения силы притяжения электромагнита

    переменного тока без короткозамкнутого витка.

    Для устранения вибрации электромагни­ты переменного тока снабжаются короткозамкнутыми витками (рис.7, а) из проводниковых материалов (медь, латунь), охватывающими часть полюса электромагнита (70 — 80%).

    Принцип работы витка заключается в следующем. Общий поток электро­магнита Ф разветвляется на поток Ф1, который проходит по не охваченной витком части полюса, и на поток Ф2, который проходит через часть, охва­тываемую короткозамкнутым витком. При этом в витке индуцируется ЭДС еК.З, и возникает ток iК.З., сдвинутый по отношению к еК.З. на угол

    Рис.7. Принцип работы короткозамкнутого витка

    в электромагнитных системах переменного тока.

    и опре­деляемый весьма незначительной индуктивностью витка. Для упрощения принимаем = 0. Ток iК.З , возбуждает магнитный поток ФК.З., который охватывает короткозамкнутый виток и вместе с частью основного потока образует поток Ф2,проходящий через часть полюса, охваченную витком, и сдвинутый во вре­мени по отношению к потоку Ф1 на угол (рис.7, б и в).

    Сила притяжения электромагнита Р складывается из двух пульсирующих, но сдвинутых во времени сил Р± и Р2 (рис.7, г). Благодаря сдвигу их во времени общая сила Р пульсирует много меньше и минимальное значение ее остается выше РОТР, чем и исключается вибрация якоря.

    Источник