Меню

Источник тока для измерения сопротивления

Измерители сопротивления

Время на чтение:

Чтобы проверить рабочее состояние электрокабеля, необходимо определить сопротивление изоляционного материала. Есть разные способы измерить сопротивление с учетом их абсолютной величины, точности. В этих целях используют спецустройства для замеров. Для определения исправности либо неисправности цепей и некоторых фрагментов, нужно знать, как использовать прибор для измерения сопротивления.

Зачем измерять сопротивление

Изоляция является защитой провода от прохождения электротока сквозь него. Во время работы электрических установок их конструкция подвергнется влиянию внешних факторов, старению и изнашиванию в процессе нагревания. Это отрицательно отразится на функциональности оборудования, потому необходимо периодически измерять сопротивления изоляции провода.

Прибор для измерения сопротивления

Чтобы измерить сопротивление, требуется иметь спецразрешение. Электропровод испытывают лишь спецкомпании и организации, имеющие квалифицированных специалистов. Они проходят обучение и получают необходимый разряд по электрической безопасности.

Важно! Проведение замеров требуется, чтобы своевременно обнаруживать повреждения в технике. Изоляция имеет важное значение в безопасности работ с оборудованием. Когда провод имеет повреждения, то установка будет опасна во время работы, так как появляется риск возгорания.

Когда вовремя проверить провод на исправность изоляции, это предупредит такие проблемы:

  • преждевременную поломку техники;
  • короткое замыкание;
  • удар током;
  • различные аварии.

Измерение сопротивления

Потому крайне важно измерять показатели сопротивления изоляционного материала провода.

Какие есть приборы для измерения электрического сопротивления

Часто возникает вопрос, как называются приборы для измерения сопротивления. Чтобы измерить электрическое сопротивление, используются следующие приборы:

  • Омметр. Это прибор спецназначения, который предназначен, чтобы определить сопротивление электротока.
  • Мегаомметр. Измерительное устройство, которое предназначено, чтобы измерять большие показатели сопротивления. Отличием от омметра станет то, что при замерах в цепь будет подаваться высокое напряжение.
  • Мультиметр. Электроприбор, который способен измерить разные показатели электроцепи, включая сопротивление. Есть 2 разновидности: цифровой и аналоговый.

Омметр

Ремонт проводки, электро- и радиотехнических изделий предполагает проверку целостности кабелей и поиск нарушения контактов в соединениях. В некоторых ситуациях сопротивление равняется бесконечности, в других — 0.

Важно! Измерять сопротивление в цепи с помощью омметра, чтобы избежать поломки, допустимо лишь при обесточивании проводов.

Измерение сопротивления омметром

До замеров сопротивления омметром требуется приготовить измеритель. Требуется:

  • Зафиксировать переключатель изделия в позицию, которая соответствует наименьшему замеру величины сопротивления.
  • Затем проверяется функциональность омметра, поскольку бывают плохие элементы питания и устройство способно не функционировать. Соединяются окончания щупов друг с другом. В омметре стрелка устанавливается точно на 0, когда это не произошло, возможно покрутить рукоятку «Уст. 0». Если изменений нет, заменяются батарейки.
  • Чтобы прозвонить электроцепь, возможно использовать прибор, где сели батарейки и стрелка не ставится на 0. Сделать вывод о целостности электроцепи возможно по отклонению стрелки. Омметр должен показывать 0, вероятно отклонение в десятых омов.
  • После проверки изделие готово к функционированию. Когда коснуться окончаниями щупов проводника, то в ситуации с его целостностью, устройство показывает нулевое сопротивление, иначе показания не поменяются.

Использование омметра

Мегаомметр

Чтобы измерить электросопротивление в диапазоне мегаомов, применяется устройство мегаомметр. Принцип функционирования устройства основывается на использовании закона Ома.

Для реализации такого закона в изделии, понадобятся:

  • генератор постоянного тока;
  • головка для измерений:
  • клеммы, чтобы подключить измеряемое сопротивление;
  • резисторы для работы измерительной головки в рабочем диапазоне;
  • переключатель, который коммутирует резисторы.

Важно! Реализация мегаомметра нуждается в минимальном количестве элементов. Подобные изделия исправно функционируют длительное время. Напряжение в аппаратах будет выдавать генератор постоянного тока, величины которого разнятся.

Измерение сопротивления мегаомметром

Работы на электрооборудовании с таким устройством несут повышенную опасность в результате того, что устройство будет вырабатывать высокое напряжение, возникает риск травматизма. Работы с мегаомметром производит персонал, который изучил руководство по использованию устройства, правила техники безопасности во время работ в электрооборудовании. Специалист должен иметь группу допуска и время от времени проходить проверку на знание правил работы в установке.

Мультиметр

Мультиметры бывают универсальными и специализированными, предназначенными в целях выполнения одного действия, однако проводимого по максимуму точно. В устройстве омметр считается лишь элементом прибора, его нужно включить в необходимый режим. Мультиметры нуждаются в определенных навыках применения — необходимо знать об их правильном подключении и интерпретировании готовых сведений.

На вид цифровое и аналоговое устройства легко различить: в цифровом информация выводится на монитор цифрами, в аналоговом циферблат проградуирован и на показатели указывает стрелка. Цифровой мультиметр более прост в применении, поскольку тут же покажет готовые данные, а показания аналогового нужно расшифровывать.

Во время работы с подобными приспособлениями, нужно учесть, что в цифровом мультиметре присутствует индикатор разрядки источника питания — когда силы тока аккумулятора не хватает, он перестанет функционировать. Аналоговый в подобном случае ничего не показывает, а просто выдает ошибочные сведения.

Важно! Для бытового использования подходит любое устройство, на шкале которого указывается достаточный предел измерения сопротивления.

В каких единицах измеряется сопротивление

Электросопротивление — противодействие, оказываемое проводником проходящему сквозь него электротоку. Главной единицей измерения в системе СИ станет ом, в системе СГС спецпоказатель отсутствует. Сопротивление (зачастую обозначено буквой R) считается, в некоторых пределах, постоянным показателем для конкретного проводника.

  • R — сопротивление;
  • U — разница электропотенциалов на окончаниях проводника в вольтах;
  • I — ток, который протекает меж концов проводника под воздействием разницы потенциалов, замеряется в амперах.

Измерение сопротивления

Как правильно использовать приборы для измерения сопротивления

Относительно технологии замеров, применять приборы требуется по указанной методике:

  1. Выводят людей из проверяемого места электрической установки. Говорится об опасности, вывешиваются спецплакаты.
  2. Снимается напряжение, обесточивается в полной мере щит, кабель, принимаются меры от случайной подачи напряжения.
  3. Проверяется отсутствие напряжения. Заранее заземляются выводы испытываемого объекта, устанавливаются щупы для измерений, снимается заземление. Такую процедуру проводят во время каждого нового замера, так как смежные элементы накапливают заряд, вносят отклонения в показания и несут риск для жизни.
  4. Монтаж и снятие щупов производят за изолированные ручки в перчатках. Делается акцент на том, что изоляция провода до проверки сопротивления очищается от загрязнения.
  5. Проверяется изоляция провода между фазами. Данные заносят в протокол измерений.
  6. Отключаются автоматы, УЗО, лампы и светильники, отсоединяются нулевые кабели от клеммы.
  7. Производится замер всех линий по отдельности между фазами. Данные также вносятся в протокол.
  8. При выявлении изъянов разбирается измеряемая часть на элементы, находится дефект и устраняется.

По завершении испытания с помощью переносного заземления снимается остаточный заряд с помощью короткого замыкания, разряжаются щупы.

Использование приборов

Меры безопасности при измерении

Даже когда возникла необходимость в бытовых условиях провести измерения сопротивления изоляции провода, перед использованием мегаомметра нужно ознакомиться с требованиями по безопасности. Главные правила:

  • Удерживать щупы лишь за изолированный и ограниченный упорами участок.
  • До подсоединения изделия отключается напряжение, нужно удостовериться, что рядом нет людей (вдоль всего измеряемого участка, когда речь о проводах).
  • До подсоединения щупов снимается остаточное напряжение посредством подключения переносного заземления. Отключается тогда, когда щупы установлены.
  • После каждого замера снимается со щупов остаточное напряжение, соединяются оголенные участки.
  • По завершении замеров к жиле подключается переносное заземление, снимается остаточный заряд.
  • Работы проводятся в перчатках.

Правила несложные, однако от них будет зависеть безопасность работника.

Требования к безопасности

Чтобы оценить функциональность электропровода, проводки, требуется замерять сопротивление изоляционного материала. В этих целях используются специальный измерительные приборы. Они будут подавать в измеряемую электроцепь напряжение, после чего на мониторе будут выданы данные.

Источник

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ

Все сопротивления условно делятся на:

Ø малые (до 1 кОм);

Ø средние (от 1 до 100 кОм);

Ø большие (более 100 кОм).

Для измерения сопротивлений применяют следующие методы:

Читайте также:  Действие переменного синусоидального тока

Ø косвенный метод (с помощью амперметра и вольтметра), с последующим вычислением сопротивления;

Ø метод непосредственной оценки (с помощью омметра)

Ø метод сравнения (с помощью моста постоянного тока).

Косвенный метод

Для измерения этим методом применяются следующие схемы измерений:

Но при этом в схеме на рисунке 1, а неточно измеряется напряжение на сопротивлении RX (оно меньше показания вольтметра на величину падения напряжения на амперметре IRA ), а в схеме на рисунке 1,б неточно измеряется ток (он меньше показания амперметра на значение тока, протекающего через вольтметр U / RV ).

В схеме на рисунке 1, а чем больше RX , тем ближе по значению напряжения вольтметра и резистора, т.е. меньше погрешность измерения напряжения. Поэтому данную схему применяют для измерения больших сопротивлений (например, сопротивления изоляции).

В схеме на рисунке 1, б чем меньше RX , тем ближе по значению токи амперметра и резистора, т.е. меньше погрешность измерения тока. Поэтому эту схему используют для определения малых сопротивлений.

Для измерения средних сопротивлений можно использовать любую из этих схем.

Метод непосредственной оценки

Для измерения величин сопротивления применяют омметры.

Омметр – это прибор для измерения сопротивлений постоянным током. В основе его работы лежит способ измерения сопротивлений с помощью вольтметра и амперметра.

Основан на том, что при постоянном напряжении сила тока в электрической цепи зависит от сопротивления. Эта зависимость позволяет по величине тока в цепи оценивать ее сопротивление. Стрелка омметра показывает на шкале величину сопротивления присоединенного к зажимам прибора. Шкала измерительного прибора градуируется в омах.

Различают две схемы омметров.

с последовательным включением измеряемого резистора RX относительно измерительного прибора

Приборы состоят из источника питания Е, стрелочного прибора (обычно микроамперметр), добавочного резистора RД и переменного калибровочного резистора R К и ключа К.

Схемы отличаются включением стрелочного прибора: в одной схеме он включен последовательно, а в другой параллельно измеряемому резистору R Х .

Схема с последовательным включением применяется для измерения больших сопротивлений (рисунок 7), а с параллельным (рисунок 8) – малых.

В качестве источника тока (питания) используются сухие гальванические элементы (батареи), которые с течением времени разряжаются, поэтому перед каждым измерением омметр (прибор) необходимо калибровать.

Омметр с последовательным включением калибруют следующим образом: замыкают переключатель К и регулируя R К (сопротивление калибровочного резистора), устанавливают стрелку прибора на отметку «0».

При подключении измеряемого резистора RX к зажимам прибора в цепи протекает ток

( R i – сопротивление источника питания Е).

Значение тока, а значит, и угол отклонения стрелки прибора зависят от R Х .

Чем больше R Х , тем меньше ток, и меньше угол отклонения стрелки. Такой омметр имеет обратную шкалу и нелинейную, так как зависимость тока, протекающего через стрелочный прибор от измеряемого сопротивления R Х будет нелинейна.

Рисунок 2 – Схема омметра с последовательным включением RХ

Омметр с параллельным включением измеряемого резистора RХ калибруется при разомкнутом переключателе К, при этом весь ток протекает через измерительный прибор и угол отклонения стрелки оказывается максимальным. Регулируя R К , устанавливают стрелку прибора на отметку » ¥ «.

При подключении RХ часть тока ответвляется в параллельную ветвь и угол отклонения стрелки уменьшается. Шкала прибора прямая и так же нелинейная, так как зависимость тока от величины измеряемого сопротивления R Х нелинейна.

Рисунок 3 – Схема омметра с параллельным включением RХ

Источник

Измерение сопротивлений

Мост для измерения сопротивления

Измерение сопротивлений Мерой электрического сопротивления, т. е. образцом единицы сопротивления, является образцовая катушка сопротивления. Набор катушек сопротивления, соединяемых по определенной схеме, называется магазином сопротивлений.

Магазины сопротивлений бывают ш тепсельные и рычажные, у первых переключение катушек производится при помощи штепселей, у вторых — при помощи рычажных переключателей. На рис. 7-28 дана схема одной «декады» пятикатушечного рычажного магазина сопротивления, дающего возможность переключателем изменять включенное между зажимами сопротивление от 0 до 9 ом ступенями по 1 ом.

Мост для измерения сопротивлений, схема которого показана на рис. 7-29, состоит из трех плеч — трех магазинов сопротивлений: r1, r2 и r Четвертым плечом служит измеряемое сопротивление rх. В одну диагональ моста включают источник питания, в другую — гальванометр.

Изменяя сопротивления трех плеч, при замкнутой кнопке Ʀ1 можно получить равенство потенциалов: точек А и Б, о чем можно судить по отсутствию отклонения стрелки гальванометра при замыкании кнопки Ʀ2.

Рис. 7-28. Рычажный пятикатушечный магазин сопротивлений

В этом случае напряжение UВА = U и Vаг = UБГ или I1r1 = I2rх и I1r2 = I2r. Разделив почленно, получим;

По найденной формуле для уравновешенного м о с т а и подсчитывают искомое сопротивление.

Мост для измерения сопротивлений

Рис. 7-29. Мост для измерения сопротивлений.

Если в схеме моста сопротивления трех плеч и напряжение питания неизменны, то ток в гальванометре зависит только от сопротивления r х. Это позволяет на шкале гальванометра нанести деления, дающие значения искомого сопротивления или величины, от которой оно зависит, например температуры. Такие измерительные мосты называются неуравновешенными.

Измерение сопротивлений амперметром и вольтметром

Величина сопротивления найденная по показанию амперметра и вольтметра (рис. 7-30), больше действительной величины искомого сопротивления rх на величину сопротивления амперметра, так как в схеме на рис. 7-30 вольтметр измеряет сумму на пряжений на сопротивлении rх и на амперметре. Если измеряемое сопротивление значительно больше сопротивления амперметра, то погрешность измерения будет небольшой.

Схема соединения для измерений сопротивлений амперметром и вольтметром

Рис. 7-30. Схема соединения для измерений сопротивлений амперметром и вольтметром (для больших сопротивлений).

наиденная по показанию приборов (рис. 7-31), меньше действительной величины искомого сопротивления rx так как амперметр измеряет сумму токов в сопротивлении r х и в вольтметре. Если измеряемое сопротивление значительно меньше сопротивления вольтметра, то погрешность будет небольшой.

Схема соединения для измерений сопротивлений амперметром и вольтметром

Рис. 7-31. Схема соединения для измерений сопротивлений амперметром и вольтметром (для меньших сопротивлений).

Омметры

Омметры и мегомметры это приборы для непосредственного измерения сопротивлений.

Они делятся на две группы: омметры, показания которых зависят от напряжения источника питания, и омметры, показания которых не зависят от напряжения источника питания. Омметр первой группы (рис. 7-32) состоит из магнитоэлектрического измерительного механизма с добавочным сопротивлением rд и последовательно соединяемым измеряемым сопротивлением rх — последовательная схема. Омметр часто снабжается батареей сухих элементов.

Последовательная схема омметра, показания которого зависят от напряжения источника питания

Рис. 7-3-2. Последовательная схема омметра, показания которого зависят от напряжения источника питания.

При разомкнутой кнопке Ʀ ток в цепи

I = Cα = U/(rx + rи + rд)

где α и С — угол поворота подвижной части и постоянная по току измерительного механизма. Из выражения следует, что

α = (U/C)(1/ rx + rи + rд)

Таким образом, для получения однозначной зависимости угла поворота подвижной части от измеряемого сопротивления, а следовательно, возможности нанести на шкале значения этого сопротивления необходимо при постоянной величине rи + rд обеспечить постоянство отношения U/C.

Для поддержания неизменным отношения U/C при изменении напряжения источника питания необходимо регулировать величину С, что достигается изменением магнитной индукции в воздушном зазоре измерительного механизма магнитным шунтом. Магнитный шунт это стальная пластина, которую поворо том винта приближают или удаляют от полюсных башмаков N’, S’ измерительного механизма (рис. 7-1).

Параллельная схема омметра, показания которого зависят от напряжения источника, питания

Для регулировки величины С, при подключенных батарее и сопротивлении rx замкнув кнопку Ʀ изменяют поло жение магнитного шунта до тех пор, пока стрелка омметра не установится на нуль шкалы. Разомкнув кнопку, отсчитывают на шкале значение измеряемой величины.

На рис. 7-33 дана другая — параллельная схема того же омметра, в которой измеряемое сопротивление r х соединяется параллельно измерительному механизму. Можно доказать, что при постоянной величине rи + rд и неизменном отношении U /С угол поворота подвижной части будет однозначно зависеть от измеряемого сопротивления.

Измерительный механизм логометра

Омметры второй группы имеют магнитоэлектрический измерительный механизм с двумя рамками на одной оси (рис. 7-34). Ток к рамкам подводится при помощи безмомент йых ленточек, не создающих противодействующих моментов.

Читайте также:  Энергия электрического тока презентация 7 класс по технологии

Рис. 7-33. Параллельная схема омметра, показания которого зависят от напряжения источника, питания.

Токи в рамках направлены противоположно, так что от взаимодействия их с полем магнита создаются два момента, направленные в разные стороны. Разность этих моментов вызывает поворот подвижной части на угол, при котором моменты взаимно уравновешивают друг друга. Угол поворота подвижной части определяется отношением токов в рамках, т. е.

Измерительные механизмы, угол поворота которых зависит от отношения токов, называются логометрами.

Схема омметра логометра

Рис. 7-34. Измерительный механизм логометра.

Одна параллельная ветвь омметра логометра (рис. 7-35) состоит из рамки и измеряемого сопротивления rx, другая ветвь — из второй рамки и добавочного сопротивления r д. Приняв во внимание, что токи в параллельных ветвях распределяются обратнопропорционально их сопротивлениям, можно написать:

Так как rд — неизменно, то угол поворота зависит только от величины измеряемого сопротивления.

Источником питания обычно служит магнитоэлектрический генератор, расположенный в кожухе омметра, приводимый во вращение от руки.

Измерение сопротивления изоляции

Сопротивление изоляции установки легко изменяется, поэтому его необходимо периодически измерять.

Схема для измерения сопротивления изоляции провода относительно земли

Рис. 7-35. Схема омметра логометра.

В соответствии с Правилами устройства электроустановок (ПУЭ):

а) испытание сопротивления изоляции осветительных и силовых электропроводок производится мегомметром с напряжением 1 000 в;

б) наименьшее сопротивление изоляций допускается 0,5 Мом;

в) сопротивление изоляции при снятых плавких вставках измеряется на участке между смежными предохранителями или за последним предохранителем, между любым проводом и землей, а также между любыми двумя проводами.

Сопротивление изоляции сети, не находящейся под рабочим напряжением, определяется при помощи мегомметра. Для измерения изоляции один из зажимов, помеченный буквой Л, присоединяют к испытуемому проводу, а второй зажим мегомметра, помеченный буквой 3, соединяют с землей (рис. 7-36). Вращая рукоятку мегомметрам номинальной скоростью, отсчитывают на шкале искомое сопротивление.

Схема для измерения сопротивления изоляции провода относительно земли

Рис. 7-36. Схема для измерения сопротивления изоляции провода относительно земли.

Присоединив зажим мегомметра Л к второму проводу, аналогично определяют сопротивление изоляции второго провода относительно земли. Для измерения сопротивления изоляции между двумя проводами к ним присоединяют два зажима мегомметра (рис. 7-37). Аналогичным образом производится измерение сопротивления изоляции электрических машин и аппаратов.

Статья на тему Измерение сопротивлений

Источник



Как устроены и работают приборы для измерения сопротивления

По своей физической природе все вещества по-разному реагируют на протекание через них электрического тока. Одни тела хорошо его пропускают и их относят к проводникам, а другие очень плохо. Это диэлектрики.

Как устроены и работают приборы для измерения сопротивления

Свойства веществ противодействовать протеканию тока оценивают численным выражением — величиной электрического сопротивления. Принцип его определения предложил Георг Ом. Его именем названа единица измерения этой характеристики.

Взаимосвязь между электрическим сопротивлением вещества, приложенным к нему напряжением и протекающим электрическим током принято называть законом Ома.

Взаимосвязь между напряжением, током и электрическим сопротивлением

Содержание статьи

Принципы измерения электрического сопротивления

Исходя из приведенной на картинке зависимости трех важнейших характеристик электричества определяют величину сопротивления. Для этого необходимо иметь:

1. источник энергии, например, батарейку или аккумулятор;

2. измерительные приборы силы тока и напряжения.

Принцип измерения электрического сопротивления

Источник напряжения через амперметр подключают к измеряемому участку, сопротивление которого необходимо определить, а вольтметром меряют падение напряжения на потребителе.

Сняв отсчет тока I амперметром и величину напряжения U вольтметром, рассчитывают значение сопротивления R по закону Ома. Этот простой принцип позволяет выполнять замеры и производить расчеты вручную. Однако, пользоваться им в таком виде сложно. Для удобства работы созданы омметры.

Конструкция простейшего омметра

Производители измерительных приборов изготавливают устройства измерения сопротивления, работающие по:

2. или цифровым технологиям.

Первый вид приборов называют стрелочными за счет способа отображения информации — перемещения стрелки относительно начального положения в точку отсчета на шкале.

Омметр стрелочного типа

Омметры стрелочного типа, как измерительные приборы сопротивлений, появились первыми и продолжают успешно работать до настоящего времени. Они есть в арсенале инструментов большинства электриков.

В конструкции этих приборов:

1. все компоненты приведенной схемы встроены в корпус;

2. источник выдает стабилизированное напряжение;

3. амперметр измеряет ток, но его шкала сразу проградуирована в единицах сопротивления, что исключает необходимость выполнения постоянных математических расчетов;

4. на внешние вывода клемм корпуса подключаются провода с концами, обеспечивающими быстрое создание электрической связи с испытуемым элементом.

Принцип работы стрелочного омметра

Стрелочные приборы подобного класса измерения работают за счет собственной магнитоэлектрической системы. Внутри измерительной головки помещена обмотка провода, в которую подключена токопроводящая пружинка.

По этой обмотке от источника питания через измеряемое сопротивление Rx проходит ток, ограничиваемый резистором R до уровня миллиампер. Он создает магнитное поле, которое начинает взаимодействовать с полем постоянного магнита, расположенного здесь же, которое показано на схеме полюсами N—S.

Чувствительная стрелка закреплена на оси пружинки и под действием результирующей силы, сформированной от влияния этих двух магнитный полей, отклоняется на угол, пропорциональный силе протекающего тока или величине сопротивления проводника Rx.

Шкала прибора выполнена в делениях сопротивления — Омах. За счет этого положение стрелки на ней сразу указывает искомую величину.

Принцип работы цифрового омметра

В чистом виде цифровые измерители сопротивлений выпускаются для выполнения сложных работ специального назначения. Массовому потребителю сейчас доступен большой ассортимент комбинированных приборов, совмещающих в своей конструкции задачи омметра, вольтметра, амперметра и другие функции.

Принцип работы мультиметра в режиме омметром

Для замера сопротивления необходимо перевести соответствующие переключатели в требуемый режим работы прибора и подключить измерительные концы к проверяемой схеме.

При разомкнутых контактах на табло будет индикация «I», как показано на фотографии. Оно соответствует большему значению, чем прибор может определить на заданном участке чувствительности. Ведь в этом положении он уже измеряет сопротивление воздушного участка между контактами зажимов соединительных проводов.

Когда же концы установлены на резистор или проводник, то цифровой омметр отобразит значение его сопротивления реальными цифрами.

Принцип измерения электрического сопротивления цифровым омметром тоже основан на применении закона Ома. Но, в его конструкции уже работают более современные технологии, связанные с использованием:

1. соответствующих датчиков, предназначенных для измерения тока и напряжения, которые передают информацию по цифровым технологиям;

2. микропроцессорных устройств, обрабатывающих полученные сведения от датчиков и выводящих их на табло в наглядном виде.

У каждого типа цифрового омметра могут быть свои отличительные пользовательские настройки, которые следует изучить перед работой. Иначе по незнанию можно допустить грубые ошибки, ибо подача напряжения на его вход встречается довольно часто. Она проявляется выгоранием внутренних элементов схемы.

Обычными омметрами проверяют и измеряют электрические цепи, сформированные проводами и резисторами, обладающие относительно небольшими электрическими сопротивлениями на пределах до нескольких десятков или тысяч Ом.

Измерительные мосты постоянного тока

Электрические приборы измерения сопротивления в виде омметров созданы как переносные, мобильные устройства. Ими удобно пользоваться для оценки типовых, стандартных схем или прозвонки отдельных цепей.

В лабораторных условиях, где часто нужна высокая точность и качественное соблюдение метрологических характеристик при выполнении измерений работают другие устройства — измерительные мосты постоянного тока.

Электрические схемы измерительных мостов на постоянном токе

Принцип работы таких приборов основан на сравнении сопротивлений двух плеч и создании баланса между ними. Контроль сбалансированного режима осуществляется контрольным мили- или микроамперметром по прекращению протекания тока в диагонали моста.

Когда стрелка прибора установится на ноль можно вычислить искомое сопротивление Rx по значениям эталонов R1, R2 и R3.

Общая схема измерительного моста

Схема измерительного моста может иметь возможность плавного регулирования сопротивлений эталонов в плечах или выполняться ступенчато.

Схема измерительного моста с плавным изменением сопротивления плеч

Внешний вид измерительных мостов

Конструктивно такие приборы выполняются в едином заводском корпусе с возможностью удобной сборки схемы для электрической проверки. Органы управления переключения эталонов позволяют быстро выполнять измерения сопротивлений.

Читайте также:  Сигнализация пандора утечка тока

Измерительный мост Р333

Омметры и мосты предназначены для измерения сопротивления проводников электрического тока, обладающих резистивным сопротивлением определенной величины.

Приборы измерения сопротивления контура заземления

Необходимость периодического контроля технического состояния контуров заземлений зданий вызвана условиями их нахождения в грунте, который вызывает коррозионные процессы металлов. Они ухудшают электрические контакты электродов с почвой, проводимость и защитные свойства по стеканию аварийных разрядов.

Схема измерения сопротивления контура заземления

Принцип работы приборов этого типа тоже основан на законе Ома. Зонд контура заземления стационарно размещен в земле (точка С), за счет чего его потенциал равен нулю.

На одинаковых расстояниях от него порядка 20 метров забивают в грунт однотипные заземлители (главный и вспомогательный) так, чтобы стационарный зонд был расположен между ними. Через оба этих электрода пропускают ток от стабилизированного источника напряжения и замеряют его величину амперметром.

На участке электродов между потенциалами точек А и С вольтметром замеряют падение напряжения, вызванное протеканием тока I. Далее проводится расчет сопротивления контура делением U на I с учетом поправки на потери тока в главном заземлителе.

Если вместо амперметра и вольтметра использовать логометр с катушками тока и напряжения, то его чувствительная стрелка будет сразу указывать конечный результат в омах, избавит пользователя от рутинных вычислений.

По этому принципу работает много марок стрелочных приборов, среди которых популярны старые модели МС-0,8, М-416 и Ф-4103.

Их удачно дополняют разнообразные современные измерители сопротивлений, созданные для подобных целей с большим арсеналом дополнительных функций.

Измеритель сопротивления MRU-101

Приборы измерения удельного сопротивления грунта

С помощью только что рассмотренного класса приборов также измеряют удельное сопротивление почвы и различных сыпучих сред. Для этого их включают по другой схеме.

Схема измерения удельного сопротивления грунта

Электроды главного и вспомогательного заземлителя разносят на расстояние, большее 10 метров. Учитывая то, что на точность замера могут влиять близкорасположенные токопроводящие объекты, например, металлические трубопроводы, стальные башни, арматура, то к ним допустимо приближаться не меньше, чем на 20 метров.

Остальные правила измерения остаются прежними.

По такому же принципу работают приборы измерения удельного сопротивления бетона и других твердых сред. Для них применяются специальные электроды и незначительно меняется технология замера.

Как устроены мегаомметры

Обычные омметры работают от энергии батарейки или аккумулятора — источника напряжения небольшой мощности. Его энергии достаточно для того, чтобы создать слабый электрический ток, который надежно проходит через металлы, но ее мало для создания токов в диэлектриках.

По этой причине обычным омметр не может выявить большинство дефектов, возникающих в слое изоляции. Для этих целей специально создан другой тип приборов измерения сопротивлений, которые принято называть на техническом языке «Мегаомметр». Название обозначает:

мега — миллион, приставка;

Ом — единица измерения;

метр — общепринятое сокращение слова измерять.

Внешний вид

Приборы этого типа тоже бывают стрелочными и цифровыми. В качестве примера можно продемонстрировать мегаомметр марки М4100/5.

Мегаомметр М4100

Его шкала состоит из двух поддиапазонов:

Электрическая схема

Мегаоометр

Сравнивая ее со схемой устройства обычного омметра, легко увидеть, что она работает по тем же самым принципам, основанным на применении закона Ома.

В качестве источника напряжения выступает генератор постоянного тока, ручку которого необходимо равномерно вращать с определенной скоростью порядка 120 оборотов в минуту. От этого зависит уровень высоковольтного напряжения, выдаваемого в схему. Эта величина должна пробить слой дефектов с пониженной изоляцией и создать сквозь нее ток, который отобразится перемешением стрелки по шкале.

Переключатель режима измерения МΩ—KΩ коммутирует положение групп резисторов схемы, обеспечивая работу прибора в одном из рабочих поддиапазонов.

Отличием конструкции мегаомметра от простого омметра является то, что на этом приборе используются не две выходные клеммы, подключаемые к измеряемому участку, а три: З (земля), Л (линия) и Э (экран).

Клеммами земля и линия пользуются для измерения сопротивдения изоляции токоведущих частей относительно земли или между разными фазами. Клемма экрана призвана устранить воздействие создаваемых токов утечек через изоляцию на точность работы прибора.

У большого количества мегаомметров других моделей клеммы обозначают немного по-другому: «rx», «—», «Э». Но суть работы прибора от этого не меняется, а клемма экрана используется для тех же целей.

Цифровые мегаомметры

Соврменные приборы измерения сопротивления изоляции оборудования работают по тем же принципам, что их стрелочные аналоги. Но они отличаются значительно большим количеством функций, удобством в измерениях, габаритами.

Выбирая цифровые приборы для постоянной эксплуатации следует учитывать их особенность: работу от автономного источника питания. На морозе батарейки быстро теряют работоспоосбность, требуют замены. По этой причине работа стрелочными моделями с ручным генератором остается востребованной.

Правила безопасности при работе с мегаомметрами

Минимальное напряжение, создаваемое прибором на выходных клеммах, составляет 100 вольт. Оно используется для проверки изоляции электронных блоков и чувствительной аппаратуры.

В зависимости от сложности и конструкции оборудования электрической схемы на мегаомметрах применяют другие значения напряжений вплоть дл 2,5 кВ включительно. Самыми мощными приборами можно оценивать изоляцию высоковольтного оборудования линий электропередач.

Все эти работы требуют четкого выполнения правил безопасности, а осуществлять их могут исключительно подготовленные специалисты, имеющие допуск к работам под напряжением.

Характерными опасностями, создаваемыми мегаомметрами при работе являются:

опасное высокое напряжение на выходных клеммах, измерительных проводах, подключенном электрическом оборудовании;

необходимость предотвращения действия наведенного потенциала;

создание остаточного заряда на схеме после выполнения замера.

При измерении сопротивления слоя изоляции высокое напряжение прикладывается между токоведущей частью и контуром земли или оборудованием другой фазы. На протяженных кабелях, линиях электропередачи оно заряжает емкость, образованную между разными потенциалами. Любой неумелый работник своим телом может создать путь для разряда этой емкости и получить электрическую травму.

Остаточное напряжение

Чтобы исключить такие несчастные ситуации перед выполнением замера мегаомметром проверяют отсутствие опасного потенциала на схеме и снимают его после работы с прибором по специальной методике.

Устранения остаточного напряжения

Омметры, мегаомметры и рассмотренные выше измерители работают на постоянном токе, определяют только резистивное сопротивление.

Приборы измерения сопротивления в цепях переменного тока

Наличие большого количества различных индуктивных и емкостных потребителей как в бытовых домашних электросетях, так и на производстве, включая предприятия энергетики, создает дополнительные потери энергии за счет реактивной составляющей полного электрического сопротивления. Отсюда возникает необходимость ее полного учета и выполнения специфических измерений.

Приборы для измерения сопротивления петли фаза-ноль

Когда в электрической проводке происходит неисправность, приводящая к закорачиванию потенциала фазы на ноль, то образуется цепь, по которой идет ток короткого замыкания. На его величину влияет сопротивление участка электропроводки от места КЗ до источника напряжения. Оно определяет величину аварийного тока, который должен отключаться автоматическими выключателями.

Поэтому сопротивление петли фаза-ноль необходимо выполнять на самой удаленной точке и с его учетом подбирать номиналы защитных автоматов.

Для выполнения подобных замеров разработано несколько методик, основанных на:

падении напряжения при: отключенной цепи и на сопротивлении нагрузки;

коротком замыкании с пониженными токами от постороннего источника.

Замер на нагрузочном сопротивлении, встроенном в прибор, отличается точностью и удобством. Для его выполнения концы прибора вставляют в самую отдалённую от защит розетку.

Измерение сопротивления петли фаза-ноль

Нелишним бывает выполнение измерений во всех розетках. Современные измерители, работающие по этому методу, сразу показывают сопротивление петли фаза-ноль на своем табло.

Измеритель сопротивления MZC-200

Все рассмотренные приборы представляют только часть устройств для измерения сопротивления. На предприятиях энергетики работают целые измерительные комплексы, позволяющие постоянно анализировать изменяющиеся величины электрических параметров на сложном высоковольтном оборудовании и принимать экстренные меры для устранения возникающих неисправностей.

Источник