Меню

Источники тока из огурца

masterok

Мастерок.жж.рф

Хочу все знать

Как добыть электричество из овощей и фруктов masterok June 7th, 2018

Оказавшись на необитаемом острове, современный Робинзон мог бы не отказывать себе в удовольствии пользоваться плеером, смартфоном или карманным фонариком при условии, что он умел бы добывать электричество из кокосов и бананов.

Наверняка многие из курса физики помнят или слышали, что из обыкновенного картофеля, и не только из него, можно добыть немного электричества.
Что для этого необходимо, и возможно ли таким способом зажечь маломощный фонарик, светодиодные часы, питающиеся от круглых батареек 1-2Вольт или заставить работать радиоприемник?

И, да и нет, давайте разбираться подробнее.

Чтобы понять, что напряжение из картошки это не выдумка, а вполне реальная вещь, достаточно воткнуть в одну единственную картофелину острые щупы от мультиметра и вы тут же увидите на экране несколько милливольт.

Если немного усложнить конструкцию, например с одной стороны в клубень вставить медный электрод или бронзовую монетку, а с другой стороны что-нибудь алюминиевое или оцинкованное, то уровень напряжения существенным образом вырастет.

Сок картофеля содержит в себе растворенные соли и кислоты, которые являются по сути естественным электролитом.

Кстати, с одинаковым успехом можно использовать для этого лимоны, апельсины, яблоки. Таким образом, все эти продукты могут питать не только людей, но и электроприборы.

Внутри таких фруктов и овощей, из-за окисления, с погруженного анода (оцинкованный контакт) будут утекать электроны. А притягиваться они будут к другому контакту — медному. При этом не путайте, электричество здесь образуется не прямо из картошки. Оно хорошо вырабатывается именно благодаря химическим процессам между тремя элементами:

  • цинк
  • медь
  • кислота

И именно цинковый контакт здесь служит как расходка. Все электроны утекают с него. При определенных условиях даже земляная почва может дать электричество. Главное условие — ее кислотность.

Земляная батарейка

Повышенная кислотность почвы — проблема для агрономов, но радость для электротехников. Содержание ионов водорода и алюминия в земле позволяет буквально воткнуть в горшок две палки (как обычно, цинковую и медную) и получить электричество. Наш результат — 0,2 В. Для улучшения результата почву стоит полить.

Важно понимать: электричество вырабатывается не из лимона или картошки. Это вовсе не та энергия химических связей в органических молекулах, которая усваивается нашим организмом в результате потребления пищи. Электроэнергия возникает благодаря химическим реакциям с участием цинка, меди и кислоты, и в нашей батарейке именно гвоздь служит расходным материалом.

Сборка батарейки из картошки

Итак, вот что необходимо для сборки более или менее емкостной батарейки:

Картошка, несколько штук, так как от одной толку будет мало.

Медные, желательно одножильные провода, чем больше сечением, тем лучше.

Оцинкованные и медные гвозди или шурупы (можно использовать просто проволоку).

Гвозди как раз таки и будут играть основную роль в выработке электричества для фонарика, оцинкованные — это минусовой контакт (анод), обмедненные — это плюс (катод).

Если применить вместо оцинкованных простые гвозди, то вы потеряете в напряжении до 40-50%. Но как вариант, работать все равно будет.

То же самое относится и к применению алюминиевой проволоки вместо гвоздей. При этом, увеличение расстояния между электродами в одной картофелине особой роли не играет.

Берете медные провода (моно жилу) сечением 1,5-2,5мм2, длиной 10-15см. Зачищаете их от изоляции и приматываете к гвоздику.

Лучше всего конечно припаять, тогда и потери напряжения будут гораздо меньше.

Один медный гвоздь с одной стороны провода, а оцинкованный с другой.

Далее раскладываете картофелины и последовательно втыкаете в них гвозди. При этом в каждый клубень втыкаются разные гвозди, от разных пар проводов. То есть в каждую картошку у вас должен быть воткнут одни цинковый контакт и один медный.

Соединяются разные клубни между собой, только через гвозди из различных материалов — медь+цинк — медь+цинк и т.д.

Замеры напряжения

Допустим у вас три картохи, и вы соединили их между собой вышеописанным образом. Чтобы узнать какое же напряжение получилось, воспользуйтесь мультиметром.

Переключаете его в режим измерения ПОСТОЯННОГО напряжения и подключаете измерительные щупы к проводникам крайних картофелин, т.е. к начальному плюсовому контакту (медь) и конечному минусовому (цинк).

Даже на трех картофелинах среднего размера можно получить почти 1,5 Вольта.

Если же по максимуму уменьшить все переходные сопротивления, а для этого:

  • в качестве медного электрода использовать не гвоздь, а саму же проволоку, которой собирается схема
  • в контактах применить пайку

то всего 4 картошки способны выдать до 12 вольт!

Если ваш дешевый фонарик запитывается от трех пальчиковых батареек, то для успешного его свечения вам понадобится порядка 5 вольт. То есть, картошек при использовании обычных проводов нужно минимум в три раза больше.

Для этого кстати, не обязательно искать дополнительные клубни, достаточно ножом разрезать существующие на несколько частей. После чего проделать с проводками и гвоздиками всю ту же самую процедуру.

В каждый разрезанный клубень последовательно вставить один оцинкованный и один медный гвоздик. В итоге вполне реально получить постоянное напряжение более чем 5,5В.

А можно ли теоретически из одной единственной картошки, получить 5 вольт и при этом добиться того, чтобы вся сборка по размеру была не больше пальчиковой батарейки? Можно и очень легко.

Отрезаете маленькие кусочки сердцевины с картошки, и прокладываете их между плоскими электродами, например монетками из разного металла (бронза, цинк, алюминий).

В итоге у вас должно получится что-то наподобие сэндвича. Даже один кусочек такой сборки способен давать до 0,5В!
А если собрать их несколько штук вместе, то требуемое значение до 5В легко получится на выходе.

Сила тока

Казалось бы все, цель достигнута, и осталось только найти способ подключить проводки к контактам питания фонарика или светодиодов.

Однако проделав такую процедуру и собрав не слабую конструкцию из нескольких картох, вы будете очень сильно разочарованы итоговым результатом.
Маломощные светодиоды конечно будут светиться, как-никак напряжение вы все-таки получили. Однако уровень яркости их свечения будет катастрофически тусклым. Почему так происходит?

Читайте также:  Какая величина переменного тока больше

Потому что, к сожалению, такой гальванический элемент дает ничтожно низкий ток. Он будет настольно малым, что даже не все мультиметры способны его замерить.

Кто-то подумает, раз не хватает тока, нужно добавить еще побольше картошки и все получится.

Безусловно, существенное увеличение клубней позволит поднять рабочее напряжение.

При последовательном соединении десятков и сотен картошек, увеличится напряжение, но не будет самого главного — достаточной емкости для увеличения силы тока.

Да и конструкция вся эта не будет рационально пригодной.

Практичный способ с варенной картошкой

Но все-таки, есть ли простой способ, как повысить мощность такой батарейки и уменьшить габариты? Да, есть.

Например, если для этой цели использовать не сырую, а варенную картошку, то мощность такого источника электричества увеличивается в несколько раз!

Чтобы собрать удобную компактную конструкцию, воспользуйтесь корпусом от старой батарейки формата С (R14) или D(R20).

Удаляете все содержимое внутри (естественно, кроме графитового стержня).

Вместо начинки все пространство заполняете варенной картошкой.

После чего собираете конструкцию батарейки в обратном порядке.

Цинковая часть корпуса старой батарейки, здесь играет существенную роль.

Общая площадь внутренних стенок получается гораздо большей, чем просто воткнутые гвоздики в сырую картоху.

Отсюда и большая мощность и КПД.

Один такой источник питания будет легко выдавать почти 1,5 вольта, также как и маленькая пальчиковая батарейка.

Но самое главное для нас это не вольты, а миллиамперы. Так вот, такая «вареная» модернизация, способна обеспечить ток до 80мА.

Такими батарейками можно запитать приемник или электронные светодиодные часы.

Причем вся сборка проработает уже не секунды, а несколько минут (до десяти). Больше батареек и картохи, больше автономного времени работы.

Лимонная батарейка

Уксусная батарейка. Формочка для льда поможет сконструировать многоэлементную батарею с уксусом в качестве электролита. Используйте оцинкованные шурупы и медную проволоку в роли электродов. Заправив батарею уксусом и подключив к ней светодиодную лампу, попробуйте постепенно засыпать и размешивать поваренную соль в ячейках: яркость свечения будет расти на глазах.

Сочные фрукты, молодой картофель и другие пищевые продукты могут служить питанием не только для людей, но и для электроприборов. Чтобы добыть из них электричество, понадобятся оцинкованный гвоздь или шуруп (то есть практически любой гвоздь или шуруп) и отрезок медной проволоки. Чтобы зафиксировать присутствие электричества, нам пригодится бытовой мультиметр, а более наглядно продемонстрировать успех поможет светодиодный светильник или даже вентилятор, рассчитанные на питание от батареек.

Разомните лимон в руках, чтобы разрушить внутренние перегородки, но не повредите кожуру. Воткните гвоздь (шуруп) и медную проволоку так, чтобы электроды располагались как можно ближе друг к другу, но не соприкасались. Чем ближе будут находиться электроды, тем меньше вероятность, что они окажутся разделены перегородкой внутри фрукта. В свою очередь, чем лучше ионный обмен между электродами внутри батарейки, тем больше ее мощность.

Суть опыта в том, чтобы поместить медный и цинковый электроды в кислую среду, будь то лимон или ванночка с уксусом. Гвоздь послужит нам отрицательным электродом, или анодом. Медную проволоку назначим положительным электродом, или катодом.

В кислой среде на поверхности анода протекает реакция окисления, в процессе которой выделяются свободные электроны. С каждого атома цинка уходит два электрона. Медь — сильный окислитель, и она может притягивать электроны, освобожденные цинком. Если замкнуть электрическую цепь (подключить к импровизированной батарейке лампочку или мультиметр), электроны потекут от анода к катоду через нее, то есть в цепи возникнет электричество.

Источник

3. Зарубежный опыт использования альтернативных источников энергии

Первая в мире силовая установка, топливом для которой служит скорлупа орехов, была официально открыта 18 сентября в Гимпи, к северу от Брисбена, на юго-восточном побережье Австралии. В первый год она должна обеспечить электричеством порядка 1200 домов провинции Квинсленд. Зеленый генератор, строительство которого обошлось в 3 миллиона австралийских долларов, является плодом совместного предприятия, созданного правительственной компанией Ergon Energy и расположенной в Гипми компанией Suncoast Gold Macadamias, третьего по величине в мире производителя орехов. Каждый час эта электростанция будет перерабатывать до 1.680 килограммов ореховой скорлупы, производя при этом 1,5 мегаватта электричества.

В индийском городе Тирупати ученые университета решили использовать фрукты, овощи и отходы от них для производства альтернативных источников питания для несложной бытовой техники с низким потреблением энергии. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок, и других овощей, и фруктов. В которую внедрены электроды из цинка и меди. Одновременное действие четырех таких батареек позволяет запустить стенные часы, пользоваться электронной игрой и карманным калькулятором, а для ручных часов и одной батарейки хватает. Новинка индийской электроники рассчитана, прежде всего, на жителей сельских районов страны, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки биобатареек.

А в 2010 году японская компания «Сони» представила на научном конгрессе в США миниатюрную электрическую батарею, работающую на фруктовом соке. Сделанная учеными компании «биобатарейка» размером 2 на 4 сантиметра и мощностью 10 милливатт может использоваться в мобильных телефонах, ноутбуках, плейерах. 8 миллилитров сока хватает примерно на 1 час. Работа над необычным источником питания велась специалистами «Сони» на протяжении нескольких лет в строгом секрете. В 2007 году был изготовлен действующий опытный образец мощность 1,5 милливатта, в 2009 году — мощностью 5 милливатт. Сейчас компания считает новинку достойной представления массовому потребителю.

4. Практическая часть

4.1. Состав фруктов и овощей

Растения содержат 6498% воды, углеводы, органические кислоты (яблочную, лимонную, винную, бензойную, муравьиную), азотистые вещества, жир, дубильные и красящие вещества, эфирные масла, ферменты, фитонциды, витамины, минеральные вещества.

Фрукты содержат органические кислоты: например, лимонная кислота присутствует в апельсинах, лимонах и других цитрусовых, яблочная кислота в яблоках и винная кислота в винограде. Именно соотношение сахара и кислотности чаще всего используется в технологических характеристиках фруктовых продуктов.

Читайте также:  Величина частоты тока в россии

Яблочная кислота найдена в яблочном и виноградном соке, ее так же можно обнаружить в соке из крыжовника и ревеня. В незначительных количествах присутствуют другие органические кислоты: молочная, янтарная, глицериновая, изолимонная. Одним из преимуществ содержания во фруктах различных органических кислот является широкий диапазон pH , встречающийся во фруктовых группах.

Соотношение кислоты и щелочи в каком-либо растворе называется кислотно-щелочным равновесием (КЩР), хотя физиологи считают, что более правильно называть это соотношение кислотно-щелочным состоянием. КЩР характеризуется специальным показателем рН (powerHydrogen «сила водорода»), который показывает число водородных атомов в данном растворе. При рН, равном 7,0, говорят о нейтральной среде. Чем ниже уровень рН, тем среда более кислая (от 6,9 до 0). Щелочная среда имеет высокий уровень рН (от 7,1 до 14,0). [14]

Таким образом, мы видим, что большинство фруктов содержит в своем составе слабые растворы кислот. Именно поэтому их можно легко превратить в простейший гальванический элемент.

Создание и исследование источников электрической энергии из овощей и фруктов

Для проведения экспериментов мне понадобились (Приложение 1, фото 2):

фрукты и овощи (лимон, яблоко, сырой картофель, свежий огурец);

медные и оцинкованные пластины;

Измерение силы тока и напряжения, вырабатываемого одним элементом

Медную и цинковую пластину вставляем в овощи или фрукты. Далее я экспериментально измерила с помощью мультиметра и проанализировала силу тока и напряжение таких батарей.

Источник

Альтернативные источники энергии. Овощи и фрукты

Победитель конкурса

  • Участник: Сытенко Мария Александровна
  • Руководитель: Жеребцова Анна Ивановна

Цель данной работы — исследование электрических свойств овощей и фруктов.

I. Введение

Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.

Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии

Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве. 1

Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.

Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.

Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.

Цель моей работы – исследование электрических свойств овощей и фруктов.

Задачи:

  1. Экспериментально измерить и проанализировать силу тока и напряжение таких батарей.
  2. Провести исследования с гальванических элементов, изменяя ширину пластин, глубину их погружений, и расстояний между электродами.
  3. Испытайте разные комбинации последовательно соединённых продуктов и проанализируйте полученные результаты.
  4. Собрать цепь, состоящую из нескольких таких батареек и постараться зажечь лампочку, запустить часы.
  5. Изготовить прибор гальванометр для определения напряжения.
  6. Исследовать электропроводность овощей и фруктов, разных сроков хранения, используя свой прибор.

Объект исследования: фрукты и овощи.

Предмет исследования: свойства овощных и фруктовых источников тока.

Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.

Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.

II. Основная часть

2.1 История создания батарейки

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым ЛуиджиГальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки.
Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное 2 истолкование. Опыты Гальвани стали основой исследований другого итальянского ученого — Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение. Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами 3 .

Читайте также:  Почему нельзя найти ток в неразветвленной части цепи простым арифметическим сложением токов ветвей

2.2 Создание фруктовой батарейки

а) с использованием одного элемента

Для создания фруктовой батареи мы попробовали взять лимоны, яблоки, огурцы свежие и соленые, помидоры, картофель сырой и вареный. Положительным полюсом определили несколько блестящих медных пластин. Для создания отрицательного полюса решили использовать оцинкованные пластины. Конечно же, понадобились провода, с зажимами на концах. Ножом сделала в фруктах небольшие надрезы, куда вставила пластины (электроды). После соединения всех частей воедино у меня получилась фруктовая или овощная батарейка (рис. 1).

Источник



Источники тока из овощей и фруктов (стр. 4 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

Вывод. Лимон может выполнять роль источника тока. Вольтметр и миллиамперметр работали. Сила тока и напряжение на мятом лимоне были больше. В этой самодельной гальванической батарейке цинковая пластинка — отрицательный электрод, а медная — положительный. Электролитом является лимонный сок, его в мятом лимоне оказалось больше. (Приложение 1, рис. 8 Напряжение — а). Лимон немятый; б). Лимон мятый и рис. 9 Сила тока — а). Лимон немятый; б). Лимон мятый)

Эксперимент № 2. Гальванический элемент из яблока

Цель: из яблока изготовить источник тока.

Как проходил эксперимент № 2.

Для эксперимента я взял кислые яблоки – красное и зеленое, две пластины – медную и цинковую и воткнул их в яблоко на некотором расстоянии друг от друга. Присоединив к ним вольтметр, измерил напряжение, а милиамперметром силу тока.

Вывод. Я убедился, что и яблоко красное и зеленое тоже могут выполнять роль источника тока. В яблоках содержится кислота, которая является электролитом. Если два разнородных металла погрузить в электролит, происходит перенос заряда, возникает ток и электрическое напряжение. Сила тока и напряжение на обоих яблоках оказалось одинаковое ( Приложение 2, рис. 10 Напряжение — а). Красное яблоко; б). Зеленое яблоко и рис.11 Сила тока — а). а). Красное яблоко; б). Зеленое яблоко).

Эксперимент № 3 -7

Затем я провел опыты с картофелем и свеклой, луковицей и солеными огурцами, помидором и грушей, апельсином и бананом.

Как проходили эксперименты № 3-7: мои действия были такие же как и в двух предыдущих экспериментах – я брал перечисленные овощи, две пластины – медную и цинковую и вставлял их в овощи и фрукты на некотором расстоянии друг от друга. Присоединив к ним вольтметр, измерил напряжение, а амперметром силу тока (Приложение 3, рис.12. Сила тока и напряжение. Свекла; рис.13. Сила тока и напряжение. Картофель; рис.14. Сила тока и напряжение. Луковица; рис.15. Сила тока и напряжение. Соленый огурец; рис.16. Сила тока и напряжение. Помидор; рис.17. Сила тока и напряжение. Груша; рис.18. Сила тока и напряжение. Апельсин; рис.19. Напряжение. Банан

Вывод. Я убедился, что все они могут выполнять роль источника тока и «работать» как батарейки.

В каждом эксперименте я измерял напряжение и силу тока и рассчитал сопротивление. Результаты измерений занес в таблицу1. Сила тока, напряжение и сопротивление, исследуемых овощей и фруктов и построил сравнительную диаграмму. (Приложение 4. Таблица1. Сила тока, напряжение и сопротивление, исследуемых овощей и фруктов и рис. 20. Диаграмма. Зависимость силы тока, напряжения, сопротивления от исследуемых овощей и фруктов).

Анализируя диаграмму, можно сделать вывод, что самое большое напряжение дает мятый лимон и немного меньше соленый огурец и груши, а у свеклы, лимона немятого и банана — самое низкое. Сила тока самая большая у соленного огурца. Это объясняется тем, что в солёном огурце присутствует в большом количестве раствор поваренной соли NaCl, который сам является очень хорошим проводником. Затем, по мере убывания значения силы тока идёт картофель (1,0 миллиампера) и лимон (0,5 миллиампера). И следовательно сопротивление самое большое у лимона немятого и свеклы; самое низкое — у соленого огурца.

III. Выводы

1. Выяснив принцип работы батареек, я пришел к выводу, что необходимым условием работы батарейки является присутствие ионов водорода в овощном и фруктовом соке. Все фрукты содержат фруктовые кислоты являющиеся электролитами. Если два разнородных металла погрузить в электролит, происходит перенос заряда. В самодельном гальваническом элементе цинковая пластина действует как отрицательный электрод, а медная – как положительный.

2.Проведенные эксперименты подтверждают гипотезу о возможности создания источников питания из фруктов и овощей. Мною были сделаны гальванические элементы из различных овощей и фруктов: лимон, яблоко, картошка, лук, свекла, помидор, апельсин, банан, соленый огурец.
3.Фруктовые батарейки дают очень слабый ток и небольшое напряжение в цепи. Из использованных фруктов и овощей лучшими источниками электрического тока являются лимон мятый, соленый огурец, груша и помидор.

Цель моей следующей работы — изучить возможности практического применения полученной батарейки.

IV. Литература

1. http://yandex. ru/images/search? text=гальвани%20луиджи

2.. Приключение великих уравнений. Источник: Книга для чтения по физике. Составитель . М. « Просвещение», 1996

3. http://class-fizika. narod. ru/8_25.htm

4.http://батарейки. рф/current_sources. php

5. http://www. nado5.ru/e-book/ehlnapryazhenie-voltmetr

6. И. Гуринович. Источник: http:///78-interesnye-fakty

7. http://radiokrot. ru/publ/istochniki_toka/1-1-0-40

V. Приложение

Приложение 1

Рис. 8. Напряжение — а). Лимон немятый; б).Лимон мятый

Рис.9. Сила тока — а). Лимон немятый; б).Лимон мятый

Приложение 2

Рис. 10. Напряжение — а). Яблоко красное; б). Яблоко зеленое

Рис.11. Сила тока — а). Яблоко красное; б). Яблоко зеленое

Приложение 3

Рис.12. Сила тока и напряжение. Свекла

Рис.13. Сила тока и напряжение. Картофель

Рис.14. Сила тока и напряжение. Луковица

Рис.15. Сила тока и напряжение. Соленый огурец

Рис.16. Сила тока и напряжение. Помидор

Рис.17. Сила тока и напряжение. Груша

Рис.18. Сила тока и напряжение. Апельсин

Рис.19. Напряжение. Банан

Приложение 4

Таблица 1.Сила тока, напряжение и сопротивление, исследуемых овощей и фруктов

Источник