Меню

Измерительный трансформатор тока понижающий

Точный учет: трансформаторы тока

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решения для ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ 7746-2001 (1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5-120% для классов точности 0,5 и 0,2, от 1-120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому приведенное выше требование можно смело отнести к обмотке учета измерительного трансформатора. Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис.2).


Рис. 1. Токовая и угловая погрешности ТТ классов точности 0,2; 0,5; 1
Рис. 2. Токовая и угловая погрешности ТТ классов точности 0,2S; 0,5S

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ 7746-2001 диапазон, но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10000 кВА, cos φ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. При заданной нагрузке токовая погрешность составит примерно 0,31% (см. рис.2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 рублей. При погрешности 0,2 эта сумма составила бы 140 160 рублей, т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1. Приведенная таблица применима для любого уровня напряжений — необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S.

Первичный ток,%
номинального значения
Погрешности ТТ
класса 0,2S,%
Удельное количество
неучтенной э/э,
кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20 ±0,2 14,016
100
120

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока. Погрешности этого диапазона регламентируются международным стандартом IEС 60044-1 (3)). В частности, для первичных токов свыше 120% номинального тока, погрешности приравнены к значениям, достигаемым при 120% номинала. Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ 7746-2001 не регламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ 7746-2001 до настоящего времени применяется в неизменном виде.

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо. Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются и встает вопрос размещения их в габаритах корпуса трансформатора а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков). Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Читайте также:  Трансформатор тока ячейки схема

Кроме ТТ с расширенным диапазоном, и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками.

В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.


Рис. 3. Отдельно стоящий
трансформатор тока

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200-300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и составляет от 1 до 6, в зависимости от уровня напряжения. С ростом уровня напряжения, увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности. Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ 7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ 7746-2001.


Рис.4. Трансформатор тока,
устанавливаемый на ввод силового
оборудования (встраиваемый ТТ).

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис.3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис.4). В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для отечественных ТТ класс 0,2S достигается только при использовании трансформатора с номинальным первичным током от 600 А, при вторичном токе 5 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50-60 ВА — этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. Не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. Отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок, 7-е изд.
  3. IEС 60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers»
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06
  6. Афанасьев В.В. «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».

Серяков Андрей Александрович,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Источник

Измерительные трансформаторы

Электрическое оборудование нуждается в постоянном контроле — особенно на крупных производствах. Для отслеживания состояния электрооборудования в промышленных компаниях и нужны измерительные трансформаторы. Они помогают регулировать потребление электричества. Общая классификация делит эти устройства на 2 типа – трансформаторы тока и трансформаторы напряжения.

Зачем нужны трансформаторы?

Если в оборудовании до 1000 В напряжение измеряют путем подключения вольтметров, то в сетях мощностью выше 6 кВ это недопустимо. Тому есть 2 причины:

  1. Чтобы измерить высокую силу тока, ее нужно предварительно понизить до параметра, который будет восприниматься рамкой стрелочного прибора или электронными преобразователями. Резистивные измерители с задачей справиться не смогут, а уменьшающий трансформатор будет неудобно использовать из-за его громоздкости.
  2. Обмотка проводников должна выдержать среднюю нагрузку электрооборудования. Также необходимо соблюдение промежутков между фазами ПУЭ. Без трансформаторов выполнение этих условий невозможно.
Читайте также:  Графики погрешности трансформаторов тока

Силу тока перед измерением нужно понижать. Трансформаторы напряжения и тока здесь отлично помогут.

Конструкции и виды трансформаторов

Трансформаторы тока и напряжения выполняют одну функцию, но имеют конструктивные различия.

Устройства напряжения

Независимо от того, для какой силы тока предусмотрена первичная обмотка, вторичная катушка всегда имеет одно напряжение – 100 В. Для счетчика электроэнергии не имеет значения, с какими устройствами «сотрудничать» – 6 кВ, 10 кВ или другими.

Поэтому если для него подходят измерительные трансформаторы напряжения (ТН), в технических характеристиках счетчика указывается 3×100. Это значит, что к одному устройству должно подключаться сразу 3 фазы.

Устройства измерения напряжения по конструкции могут быть 2 видов:

  • Компонент для преобразования одной фазы помещен в отдельный корпус. Если устройство трехфазное, подключают сразу 3 элемента.
  • В одном корпусе находится элемент для работы сразу с 3 фазами. Первичные обмотки всех компонентов трехфазного устройства соединены в виде звезды.

Для защиты первичных обмоток служат предохранители. Вторичные обмотки раньше защищались аналогично, сейчас предохранители заменили автоматическими выключателями.

У устройств напряжения несколько вторичных обмоток:

  • для учетных приборов (точность 0.5);
  • для измерительных элементов (точность 0.5);
  • для компонентов релейной защиты (класс 10P);
  • для рассоединенного треугольника (класс 10P).

Класс точности нужен для фиксации измерений. Но здесь важно учитывать, что измерительная обмотка будет работать в указанном классе точности, если нагрузка на нее не превышена. Поэтому на приборе обязательно прописывается допустимая мощность.

Устройства тока

Измерительные трансформаторы тока (ТТ) тоже оборудованы первичной и вторичной обмотками. Однако есть некоторые отличия:

  • первичный слой может иметь одну или несколько закруток, но чаще всего он выглядит, как шина, которая проходит через весь корпус;
  • у ТТ до 1000 В только одна вторичная катушка, у высоковольтных – минимум две.

Заявленный ток на второй обмотке всегда будет равен 5 А независимо от напряжения, для которого подготовлена первичная катушка. В остальном по принципу работы ТТ аналогичен ТН.

Технические характеристики трансформаторов тока

Наиболее важны следующие характеристики устройств:

  1. Номинальное напряжение. Оно прописывается в киловольтах в техпаспорте оборудования. Цифра может иметь разброс от 0,66 до 1150 кВ.
  2. Заявленный ток на первичной катушке (l1). Зависит от конкретной категории устройства. Допускается разброс от 1,0 до 40000,0 А.
  3. Ток вторичной обмотки (l2). Встречаются значения 1,0 А или 5,0 А. На заказ могут производиться приборы на 2,0 А или 2,5 А.

Еще одним важным значением считают коэффициент трансформации (КТ). Он характеризует взаимоотношения между первичным и вторичным токами. Рассчитывается по формуле КТ=L1/L2. Вычисляемый таким образом коэффициент считается действительным.

Принцип действия трансформаторов

В основе работы трансформаторов лежит закон электромагнитной индукции. Пошаговая расшифровка принципа работы такова:

  1. Из внешней электросети ток отправляется на силовую первичную катушку, где работает с ее сопротивлением. В результате вокруг обмотки возникает магнитный ток.
  2. Это поле улавливается магнитопроводом. Магнитный поток размещается перпендикулярно направлению тока, поэтому потери силы тока во время трансформации минимальны.
  3. Затем начинается пересечение вторичной обмотки, в ходе которого магнитный поток активирует функции, движущие электроток.

Под воздействием электродвижущей силы возникает ток, которому приходится преодолевать полное сопротивление катушки и итогового напряжения. При выходе из вторичной обмотки нагрузка падает.

Варианты маркировки

На корпусе каждого трансформатора есть маркировка с техническими данными. Встречаются такие маркировки:

  1. ТДТН-1600/110. Уменьшающее устройство с трехфазным действием. Снабжено принудительным масляным охлаждением и компонентом РПН. Заявленная мощность – 1600, показатели на обмотке – 110 кВ.
  2. ТМ-100/10. Трансформатор с двойной обмоткой. Предназначен для работы с трехфазной сетью. Процесс охлаждения естественный, работает на масле. Нагрузка меняется посредством ПБВ узла. Допустимая сила – 100 кВА, класс обмотки – 10 кВ.
  3. АТДЦТН-120000/500/110-85. Автотрансформатор для сети с 3 фазами, оснащенный 3 катушками. Искусственная система масляной циркуляции. Есть устройство РПН. Мощность 25 МВА, производительность обмотки – 35 кВ. Используется на электростанциях.
  4. ТРДНС-25000/35-80. Оборудование для подключения к трехфазной электросети. Имеет 2 расщепленные обмотки. Охлаждается путем циркулирования масляной жидкости. Мощность 25 МВА. Класс напряжения – 35 кВ. Конструкция была изготовлена в 1980 году.

Схема подключения трансформатора

Рассмотрим схему подключения оборудования на примере однофазного устройства. Особенно внимательно нужно отнестись к порядку подключения кабелей к клеммам:

  1. К первой клемме присоединяется фазный провод. Он может быть белым, черным или коричневым.
  2. Ко второй клемме подключают фазный провод, который испытывает силовую нагрузку. Цвет кабеля такой же – коричневый, белый или черный.
  3. К третьей клемме крепят нулевой электропровод. Он окрашен в голубой или синеватый цвет.
  4. На четвертую клемму подключается провод «ноль» голубого или синего оттенка.

Такое устройство не требует обеспечения защиты на заземление. На однофазном счетчике есть дополнительные участки для подключения. Они считаются вспомогательными и служат для обеспечения большей эффективности. Также с их помощью можно организовать автоматизированный учет потребляемой электроэнергии.

Как выбрать трансформатор?

При выборе трансформатора учитывайте заявленное напряжение устройства — оно не должно быть ниже, чем в электросети. Для трехфазной электросети в 380 В подойдет ТТ с показателем от 0,66 кВ. Однако на оборудование с мощностью свыше 1000 В его ставить нельзя.

Есть и другие правила:

  1. Сечение кабеля для подсоединения трансформатора к цепи вторичной катушки не должно вызывать превышенные потери. Например, для класса с точностью 0,5 максимально возможные растраты – 0,25%.
  2. В системах коммерческого учета ставят оборудование с высокими разрядами точности и минимальной степенью погрешности.
  3. Возможна установка приборов с превышенным КТ. Но только если при максимальной нагрузке напряжение составит меньше половины от теоретически возможного.

Лучше делать акцент на брендовых марках — скажем, Schneider Electric, ABB. Только тогда можно быть уверенным, что цифры из техпаспорта будут соответствовать действительности.

Источник

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать, используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом.

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Читайте также:  Характеристики тока в электросети

Применение

Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например, до стандартных 5 Ампер.

Современный рынок предлагает решения совместимые как с проводами, так и с шинами.

Важное замечание

Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.

Трансформаторы тока выполняют не только важные задачи отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.

Источник



Особенности применения и выбора измерительных трансформаторов тока

Измерительный трансформатор тока — это специальный прибор узкого направления, который предназначен для измерения переменного тока и его контроля. Чаще всего применяется в системах релейной защиты (автоматики) и измерительных приборов. Его использование необходимо тогда, когда непосредственное присоединение прибора для измерения, к электрической сети с переменным напряжением невозможно или небезопасно для персонала обслуживающего его. А также для организации гальванической развязки первичных силовых цепей от измерительных. Расчёт и выбор измерительного трансформатора тока выполняется таким образом, чтобы изменения формы сигнала были сведены к нулю, а влияние на силовую контролируемую цепь было минимальным.

Назначение измерительных трансформаторов

Главная функция этого измерительного прибора — это отображение изменений тока, максимально пропорционально. Трансформаторы тока гарантируют полную безопасность измерений, отделяя измерительные цепи от первичных с опасным высоким напряжением, которое чаще всего составляют тысячи вольт. Требования, предъявляемые к их классу точности очень велики, так как от этого зависит работа дорогостоящего мощного оборудования.

Принцип действия и конструкция

Трансформаторы измерительные выпускают с двумя и больше группами вторичных обмоток. Первая применяется для включения устройств релейной защиты и сигнализации. А другая, с большим классом точности, для подключения устройств точного измерения и учёта. Они помещены на специально изготовленный ферромагнитный сердечник, который набран из листов специальной электротехнической стали довольно тонкой толщины. Первичную обмотку непосредственно включают последовательно в измеряемую сеть, а ко вторичной обмотке подключают катушки различных измерительных приборов, чаще всего амперметров и счетчиков электроэнергии.

трансформатор тока

В трансформаторах тока, как и в большем количестве других таких электромагнитных устройств, величина первичного тока больше, чем вторичного. Первичная обмотка исполняется из провода разного сечения или же шины, в зависимости от номинального значения тока. В трансформаторах тока 500 А и выше, первичная обмотка чаще всего выполнена из 1-го единственного витка. Он может быть в виде прямой шины из меди или алюминия, которая проходит через специальное окно сердечника. Корректность измерений любого измерительного трансформатора характеризуется погрешностью значения коэффициента трансформации. Для того чтобы не перепутать концы, на них обязательно наносится маркировка.
Аварийная небезопасная работа, связана с обрывом вторичной цепи ТТ при включенной в цепь первичной, это приводит к очень сильному намагничиванию сердечника и даже при обрывe вторичной обмотки. Поэтому при включении без нагрузки вторичные обмотки соединяются накоротко.
По классу точности все измерительные ТТ разделены на несколько уровней. Особенно точные, называются лабораторные и имеют классы точности не больше 0,01–0,05;

Схемы соединений

Схемы соединений трансформатора

Схемы соединений, представленные ниже, дают возможность персоналу контролировать токи в каждой из фаз.

В целях безопасности персонала, низковольтного измерительного оборудования и приборов один вывод вторичной обмотки, а также корпус заземляют.

Классификация и выбор

По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:

  • Встроенные. Первичная обмотка у них служит элементом для другого устройства. Они устанавливаются на вводах и имеют только вторичную обмотку. Функцию первичной обмотки выполняет другой токоведущий элемент линейного ввода. Конструктивно это магнитопровод кольцевого типа, а его обмотки имеют отпайки, соответствующие разным коэффициентам трансформации;
  • Опорные. Предназначенные для монтажа и установки на опорной ровной плоскости;
  • Проходной. По своей структуре это тот же встроенный, только вот находиться он может снаружи другого электрического устройства;
  • Шинный. Первичной обмоткой служит одна или несколько шин включенных в одну фазу. Их изоляция рассчитывается с запасом, что бы он мог выдержать даже многократное увеличение напряжения;Шинный ТТ
  • Втулочный. Это одновременно и проходной, и шинный трансформатор тока;
  • Разъемный. Его магнитопровод состоит из разборных элементов;Разъемный ТТ
  • Переносной. Это устройство электрики называют токоизмерительные клещи. Они являются переносным и удобным измерительным трансформатором тока, у которого магнитная система размыкается и замыкается уже вокруг того провода в котором и нужно измерять значение тока.Токоизмерительные клещи

При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А. То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно. Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5. Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.

Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:

  1. Номинальное и максимальное напряжение в первичной обмотке;
  2. Номинальное значение первичного тока;
  3. Частота переменного тока;
  4. Класс точности, для цепей измерения и защиты он разный.

Техническое обслуживание

Эксплуатация измерительных трансформаторов не является очень сложным и трудоёмким процессом. Действия персонала заключаются, в основном, в надзоре за исправностью его вторичных цепей, наличием защитных заземлений и показаниями приборов контроля, а также счётчиков. Осмотр чаще всего производится визуальный, из-за опасности поражения человека высоким напряжением, вход за ограждения, где установлены трансформаторы строго запрещён. Однако, это касается в большей степени систем с напряжением выше 1000 Вольт. Для низковольтных цепей визуальный осмотр на наличие нагрева соединений, а также коррозии контактных зажимов является неотъемлемой работой электротехнического персонала. Самый часто применяемый прибор для измерения тока в цепях 0,4 кВ это токоизмерительные клещи. Так как при расчёте и разработке пусковой аппаратуры очень редко используются стационарные трансформаторы для измерения.

В любом случае нужно обращать внимание и принимать меры к устранению обнаруженных дефектов таких как:

  1. Обнаружение трещин в изоляторах и фарфоровых диэлектрических элементах;
  2. Плохое состояние армированных швов;
  3. Потрескивания и разряды внутри устройства;
  4. Отсутствие заземления корпуса или вторичной обмотки.

Проводя обслуживание измерительных трансформаторов, на щитах где установлены приборы, нужно смотреть не только за показаниями приборов, а ещё и за контактными соединениями проводов, которые подключаются к ним. Кстати, их сечение не должно быть меньше 2,5 мм² для медных проводов, и 4 мм² для алюминиевых.

Проверка измерительных трансформаторов

Проверка измерительного трансформатора тока

Испытание измерительных трансформаторов сводится к измерению сопротивления изоляции и коэффициента трансформации, который определяется по следующей схеме.

Расшифровка маркировок ТТ

При этом в первичную обмотку от специального нагрузочного трансформатора или автотрансформатора подаётся ток не меньше 20% от номинального. Как известно, коэффициент трансформации будет равен соотношению тока в первичной обмотке к току во вторичной. После чего это значение сравнивается с номиналом. Если трансформатор имеет несколько вторичных обмоток, то необходимо проверит каждую. И также нельзя забывать о наличии правильной маркировки.

Выбор нужно трансформатора тока, а также их испытательные характеристики определяют в лабораторных условиях специальный высококвалифицированный электротехнический персонал, где и выдаётся соответствующий документ по его результатам.

Источник