Меню

Как измерить ток ветви

Как определить силу тока в цепи?

Как определить силу тока в цепи?

Определение электрической цепи подразумевает набор некоторых объектов и устройств, между собой соединенных определенным образом, которые являются путем для протекания электрического тока. Физическая величина, характеризующаяся отношением заряда, который сечение проводника за время, к значению этого временного промежутка – это сила тока в цепи.

Какие бывают электрические цепи?

Составляют цепь:

  • генератор (источника энергии);
  • нагрузки (энергопотребителей);
  • провода.

Какие бывают электрические цепи?

Их также делят на разветвленные и неразветвленные, т.е. простые, где ток, протекающий к потребителю от источника энергии, не меняет значения. Другими словами, его величина одинакова на всех элементах. Примером простейшей цепи служит освещение помещения одной лампой, где от источника энергии течет ток через выключатель к лампе накаливания и возвращается назад к источнику.

Для разветвленных цепей характерно одно или несколько ответвлений, т.е. на своем пути разветвляется ток, идущий от источника, и течет по ветвям к независимым потребителям, изменяя свое значение.

В качестве примера служить тоже освещение, но при наличии люстры, состоящей не из одной, а из нескольких лампочек и многоклавишного выключателя. Ток, дойдя до выключателя от источника, разделяется, чтобы питать лампы. Затем, возвращается по общему для них проводу назад.

Определение ветви

Определение ветви

Ветвь – это один или больше элементов, которые соединены последовательно.

Определение ветви

Напряжение измеряют относительно земли, где его величина составляет ноль. Ток течет из узла, в котором напряжение высокое, к узлу с низким.

Вычислить напряжение в узле легко:

V1-V2=I1*(R1), где

I1 — ток, текущий из 1 узла ко 2;

V1 — известное напряжение;

R1 — сопротивление между этими узлами;

V2 – искомое напряжение.

Проведя определенные действия, имеем — V2=V1-(I1*R1).

Так же определяется ток ответвления, когда известно напряжение узлов: I 1=(V1-V2)/R1 или I 1+ I3=I2, что означает, что входящий ток узла и выходящий одинаковы

Нелинеые и линейные цепи

В первых присутствует минимум один элемент, у которого существует зависимость параметров от тока, текущего по ним, и прикладываемого напряжения.

Во втором случае, ни одна характеристика составляющих цепь элементов, от вида тока, текущего по ним, и его величины не зависит. Кроме этого, в самих цепях различают внешние части и внутренние.

К первой принадлежит источник электроэнергии, а к внешней – провода, включатели и выключатели, измерительные приборы, т.е. все подсоединенное к источнику при помощи зажимов. Ток может течь исключительно по замкнутой цепи. Если же в каком-либо месте возникает разрыв, он прекращается.

Цепи еще бывают постоянного тока, т.е. в для которых не свойственно изменение направления тока (полярность источников ЭДС постоянна), и переменного, для которых характерно изменение во времени протекающего тока.

В цепях выступать источниками питания могут быть: аккумуляторы, электромеханические генераторы и термоэлектрические, фотоэлементы и гальванические. У них сопротивление внутреннее настолько мало, по отношению к другим нагрузкам, что им можно пренебречь.

Приемниками постоянного тока служат осветительные приборы, электромоторы, преобразующие в механическую электрическую энергию, и др.

К оборудованию вспомогательному относят:

  • рубильник;
  • приборы для измерения различных параметров (вольтметры и амперметры);
  • элементы защиты типа плавких предохранителей.

Оборудование

Для всех электроприемников важны два параметра – напряжение на их зажимах и мощность. Элементы, составляющие электрическую цепь, могут быть активными, т.е. индуцирующими ЭДС (моторы, аккумуляторные батареи) и пассивными (провода, резисторы, конденсаторы, катушки индуктивности).

Схема

Цепь с активным сопротивлением и индуктивностью

Для цепи, питающейся от переменного тока, в которую включена катушка индуктивности, принято считать, что активное сопротивление ее равняется нулю. В действительности и провод катушки, и соединительные обладают, путь и очень маленьким, активным сопротивлением. Поэтому цепь будет потреблять энергию.

Рекомендуем:

  • Схемы подключения трехфазного электродвигателя на 220 вольт
  • Частотный преобразователь для однофазного электродвигателя
  • Электродвигатели асинхронные трехфазные: технические характеристики, виды, особенности

Следовательно, определяя общее сопротивление цепи, учитывать необходимо активное и реактивное сопротивление. Однако, они разнятся по характеру, поэтому обычным способом их складывать невозможно. Использовать нужно метод геометрического сложения, выглядит который следующим образом (рисунок ниже):

Требуется построить треугольник, одна из сторон которого равна величине сопротивления активного, а другая – индуктивного. Величина суммарного сопротивления соответствует третьей стороне, т.е. гипотенузе.

Измеряется полное сопротивление омами, а обозначается «Z». Из выполненного построения понятно, что оно (гипотенуза) больше всегда, чем взятые отдельно величины активного и индуктивного (катетов).

В виде алгебраического выражения это выглядит так:

Здесь:

Z — полное сопротивление;

R — активное;

XL — индуктивное.

Так выглядит зависимость между сопротивлениями составляющих цепь элементов и полным.

Мощность цепи с катушкой индуктивности

Мощность, как известно из программы средней школы, это произведение тока и напряжения, которые являются величинами переменными. Значит, переменной величиной в цепи с активным сопротивлением и индуктивностью будет и мощность.

Ее значение в определенный момент можно вычислить, перемножив значения тока и напряжения в этот же момент. Проделав эти действия для каждого временного момента, получаем графики: а – для содержащей индуктивность цепи, б – активное:

Пунктирной кривой p показана мощность цепи переменного тока, которая состоит из индуктивности. Для ее построения справедливо алгебраическое умножение: умножение двух величин с одинаковым знаком (два минуса или два плюса) в результате дают величину положительную, а при умножении их с разными знаками – отрицательную.

Для цепи, которая помимо индуктивности содержит резистор, график мощности выглядит так:

Линия мощности при этом расположена оси времени. Означает это, что генератор с цепью не обмениваются энергией, поэтому отдаваемая в цепь генератором мощность, цепью потребляется полностью.

Получается, что при большем сдвиге фаз между током и напряжением, меньше мощности, потребляемая цепью.

Мощность электрического тока

Ток, идущий от высокого потенциала к низкому, совершает работу. Скорость ее совершения называется мощностью тока в цепи. Поскольку, силой тока называют количество проходящего в течении секунды через сечение цепи электричества, то мощность является величиной, находящейся в прямо пропорциональной зависимости от силы тока в цепи с резистором и напряжения (разности потенциалов). Измеряют ее в Вт (ваттах) и обозначают «Р».

P = I*U

Если же известны лишь сопротивление и сила тока, ее вычисляют по формуле:

В результате имеем:

Если известными величинами являются сопротивление и напряжение, ее высчитывают так:

Источник

Расчет электрических цепей

Для вычисления рабочих параметров радиотехнических устройств и отдельных схем применяют специальные методики. После изучения соответствующих технологий результат можно узнать быстро, без сложных практических экспериментов. Корректный расчет электрических цепей пригодится на стадии проектирования и для выполнения ремонтных работ.

Задачи на расчет электрических цепей решают с применением типовых алгоритмов

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

Типовые названия

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.
Читайте также:  Рисунок двигатель постоянного тока независимого возбуждения

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

Параллельное соединение резисторов, схемотехника и формулы для расчетов

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

  • базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХL по формуле:

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Пояснительная схема к расчету с двумя источниками

Дополнительные методы расчета цепей

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.

Графическое пояснение

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Видео

Источник

Как измерить силу тока мультиметром

На приборах сила тока, которую они могут выдержать, указывается редко. Основными считаются напряжение и потребляемая мощность. Но в некоторых случаях без определения этой характеристики не обойтись. Мы расскажем, как измерить силу тока мультиметром и как можно использовать полученные данные.

Для чего измерять силу тока

Измерение силы тока в электротехнике проводится реже, чем напряжения или сопротивления. Но она необходима:

  • Для определения фактической мощности электроприбора P. Зная напряжение источника U и применив формулу Р=UxI, можно получить значение работы в ваттах.
  • Для проверки цепей или отдельных устройств на соответствие данной нагрузке. Если она слишком большая, возможен перегрев проводников и выход приборов из строя.
  • Для поиска утечки тока в аккумуляторе. Зачастую автовладельцы обнаруживают, что он разрядился при отсутствии нагрузки в гараже или на стоянке. Простая проверка помогает найти активных потребителей и отключить их, тем самым решить проблему.
  • Для расчета необходимой емкости источника. Например, при измерении светодиодной лампы установлено, что сила тока потребления равна 20 мА, а батарейка при данном сопротивлении нагрузки может обеспечить 900 мА. Тогда тока источника хватит на 45 часов работы светодиода.
  • Для поиска неисправностей при ремонте бытовой техники. Какие-либо отклонения в потреблении тока в меньшую сторону будут свидетельствовать о наличии неработающих участков.

В электротехнике или радиотехнике сила тока не менее важна, чем напряжение. Для ее определения в профессиональной работе раньше использовались амперметры. С появлением универсальных мультиметров эти исследования стали значительно проще и доступнее.

Особенности измерений

Если представить, что электрический ток — это текущая по трубе вода, а напряжение — действующий напор, то многие понятия и формулы становятся понятными. Когда труба перекрыта, то напор есть, а воды нет. Пока не появится потребитель, то есть нагрузка, он не потечет. А сопротивление — это подводные камни в русле, мешающие свободному прохождению потока, но заставляющие его работать.

Читайте также:  Как включают в электрическую цепь предохранитель защищающий оборудование от токов превышающих

Сила тока в физическом понимании — это количество заряженных частиц, протекающих в единицу времени через определенную точку системы. Измеряется она в амперах А или миллиамперах мА.

Измерения проводятся с помощью амперметров, а также бытовых или профессиональных мультиметров. Цифровые измерители просты и удобны в работе. Они позволяют установить не только силу тока и напряжение, но и другие характеристики — сопротивление, емкость конденсаторов, частоту переменного тока и т.д. Опасной для человека считается сила тока, превышающая 15 мА, при которой происходит спазм мышц. А удар в 100 мА — это практически всегда смертельный исход. Поэтому все работы, связанные с сетями под напряжением, должны производиться строго с соблюдением техники безопасности.

Алгоритм измерения силы тока мультиметром

Универсальные тестеры с питанием от батареек помогут быстро и точно определить нужные параметры цепи. Порядок стандартных действий:

  • выставляется нужный режим;
  • щупы подключаются к разъемам на измерительном приборе;
  • мультиметр встраивается в цепь;
  • после подключения источника питания снимаются показания.

Главное условие — обязательно должна присутствовать нагрузка, которая собственно и определяет значение силы тока. Это могут быть любые электроприборы с сопротивлением больше 0.

Выбор режима

На корпусе мультиметра расположен переключатель, который нужно перевести в сектор для измерения силы тока. Постоянный ток можно исследовать практически на всех мультиметрах. На шкале для него есть обозначения — А с прямой чертой и 3 пунктирами под ней, DCA и/или значок 10А. Профессиональными приборами можно измерять силу тока до 20 А.

Если параметры тока неизвестны, рекомендуется устанавливать переключатель на максимальный диапазон. Так вы убережете прибор от короткого замыкания и порчи. Затем, когда порядок величины будет установлен, ручку можно повернуть в другую позицию для получения более точных данных.

В некоторых моделях не предусмотрено измерение переменного тока. Но покупать другой мультиметр совсем необязательно. В этом случае можно использовать различные приспособления, например, готовые или самодельные резисторы. Их сопротивлением должно соответствовать 1 Ом. Тогда согласно закону Ома I=U/R снимаемое напряжение численно будет равно силе тока на данном участке цепи.

Также используется метод с выпрямлением диодным мостом. На вход подается переменный ток, а на выходе он постоянный. Затем можно проводить измерения своим мультиметром.

Подключение щупов

Щупы, прилагаемые к мультиметру, изготовлены в разных цветах — черный «минусовый» и красный для нагрузки. Они вставляются в гнезда на корпусе:

  • черный в СОМ;
  • красный в VΩmA или 10А.

Рекомендуется устанавливать проводники в разъемы с заведомо большим диапазоном, то есть сразу в 10 А. Особенно это важно, если верхний предел величины точно не известен. Измеряемый ток будет сначала определяться грубо, а при необходимости переключатель можно перевести в более тонкий регистр.

Измерение

Мультиметр для определения силы тока всегда подключается в цепь последовательно с нагрузкой или в разрыв. В качестве источника питания можно использовать бытовую электросеть или блок питания. По правилам электробезопасности сначала необходимо собрать всю систему, а затем подключить электричество.

Если на дисплее мультиметра высветились нули, значит, произошел обрыв и проводимость отсутствует. Иногда это показывает, что предел измерений установлен высоковато. В последнем случае нужно отключить питание и перенастроить мультиметр в соответствии с ожидаемой величиной, то есть переставить в другой разъем красный щуп и выставить более низкий предел измерений.

Переменный ток

В большинстве сетей — бытовых или промышленного назначения — протекает переменный ток. Он гораздо легче трансформируется и меньше теряет при передаче на дальние расстояния, чем постоянный.

При измерении напряжения или сопротивления мультиметр подключается параллельно нагрузке, но для определения силы тестер нужно встроить в разрыв цепи. В этом заключается определенная сложность. Но не обязательно резать провода. Можно использовать разборные разъемы. Например, специальную пару проводников со штырьками на одном конце и с «крокодилами» на другом. Штырьки вставляются в розетку, а «крокодилами» замыкают цепь на клеммах или вилке.

Самодельные приспособления также удобны. Если приходится проводить много измерений, то без них не обойтись. На рисунке вы видите устройство, которое поможет в работе без всякой опасности получить удар током.

Важно распределить правильно все проводники: фаза подключается к контакту одной розетки, ноль — к другой, между остальными устанавливается перемычка. Чтобы измерить силу тока, нагрузка подключается к первой розетке, а мультиметр ко второй. При подаче питания в замкнутой цепи легко определить силу тока.

Не разрывая проводника можно провести измерения с помощью токовых клещей. Они предназначены для работы как с переменным, так и постоянным током. Прибор внешне похожи на мультиметр с двумя круглыми зажимами. Между ними помещается исследуемый провод. Принцип установки режимов и диапазона аналогичен мультитестеру.

Постоянный ток

Источники такого тока — это аккумуляторы, блоки питания, генераторы и батареи. Поскольку отсутствует пульсация, «плюс» и «минус» всегда постоянны.

Постоянный ток при низком напряжении менее опасный, чем переменный. Он не вызывает патологических изменений в организме при разряде до 500 В, но свыше уже становится гораздо разрушительнее постоянного. В любом случае при работе с электричеством необходимо быть очень осторожным. Даже банальная батарейка в 9 В при определенных условиях может выдать достаточно травмирующий ток.

Измерение силы постоянного тока производится также в разрыве цепи. Допускается напрямую без нагрузки подключать к мультиметру батарейки с малой емкостью, но снимать показания нужно очень быстро, чтобы не вывести тестер из строя. При этом переключатель выставляется на максимум, а красный щуп помещается в разъем на 10 А.

Определение утечек

Иногда даже после небольшого простоя автомобильная аккумуляторная батарея отказывается давать необходимый заряд для запуска двигателя. В связи с этим владельцев авто интересует, как измерить силу тока аккумулятора мультиметром и откуда появилась утечка.

Аккумулятор — это источник постоянного тока с достаточно большой емкостью. Электроэнергия производится в нем в результате химических реакций, а после разрядки батарея вновь может восполнить нехватку тока от зарядного устройства.

Существует норма утечки тока в системе автомобиля, которая не превышает 30-50 мА. Но даже зимой это не должно стать причиной разрядки аккумулятора. Во время стоянки электроэнергия тратится на работу автомобильных гаджетов — сигнализации, часах, аудиосистемы, навигации и т.д. Энергопотребление их мало — не более нескольких десятков миллиампер.

Критические утечки, которые приводят к разрядке батареи, возникают из-за дополнительных потребителей или короткого замыкания в цепи. Определить их можно с помощью мультиметра:

  1. Отключить все устройства, потребляющие энергию. Выключить зажигание и вынуть из замка ключ.
  2. Установить режим измерения постоянной силы тока на 10 А.
  3. Устроить в цепи разрыв — «минус» аккумулятора подключить к разъему СОМ мультиметра, красный щуп соединить с помощью крокодила с бортовой сетью автомобиля.

В таком состоянии утечек, свыше допустимых 30-50 мА, быть не должно. Но если они присутствуют, придется искать причину. Нештатные потребители могут быть среди установленных самостоятельно устройств — магнитолы, противотуманных фар, подогрева сиденья, сигнализации и т.д.

Чтобы точно определить, что именно из этого является «виновником» энергопотерь, каждый вид оборудования нужно отсоединить от цепи и повторить испытания.

Часто расположенные вблизи движущихся частей автомобиля провода перетираются, что может стать причиной короткого замыкания. Поэтому все электрические коммуникации обследуются на наличие повреждений и изолируются.

Читайте также:  Примеры использования теплового действия тока в промышленности

Если же и после этих мероприятий добиться устранения утечки не удалось, проверка проводится при отключенных предохранителях и реле. Причины также могут крыться в неисправном генераторе или стартере.

Как измерить силу тока мультиметром в розетке

На такой вопрос есть единственно правильный ответ — это невозможно. В розетке присутствует только напряжение на контактах. Ток появится лишь после подключения нагрузки — лампочки или электроприбора.

Если напрямую подключить мультиметр к розетке, при соединении фазы и 0 в цепи произойдет короткое замыкание, поскольку сопротивление ничтожно мало. В лучшем случае сгорит предохранитель и выйдет из строя сам мультитестер, но последствия могут быть гораздо хуже.

Автоматическая защита домовой сети отреагирует отключением электропитания. Свет погаснет везде, а розетки не будут работать. Кроме того, искры от перегоревшего тестера могут вызвать пожар, ожог и другие неприятности, поэтому не стоит измерять ток в розетке даже ради эксперимента.

Как мультиметром измерить силу тока зарядного устройства

Устройство для зарядки аккумуляторов преобразует переменный ток из сети в постоянный с помощью трансформатора, выпрямителя и стабилизатора напряжения. Для автовладельцев производятся пуско-зарядные устройства — ПЗУ, — которые сочетают функции зарядки аккумулятора и запуска двигателя при севшей батарее. При этом заряда может вовсе не быть или в течение нескольких минут создается частичный заряд, необходимый для начала работы мотора.

В некоторых моделях ЗУ отсутствует индикация заряда, поэтому есть проблема с определением ампеража. Легко проверить силу тока можно обычным мультимером:

  1. Аккумулятор необходимо снять с автомобиля и подключить к зарядке.
  2. На мультиметре выставить шкалу на 10 А, а красный щуп вставить в разъем тоже на 10 А.
  3. «Плюс» зарядного устройства присоединить к положительному полюсу батареи.
  4. «Минус» зарядника соединить черным щупом с базой мультиметра (гнездо СОМ).
  5. Красный щуп подключить ко второй клемме аккумулятора.

При включении зарядного устройства в сеть мультитестер покажет силу тока в цепи. Задача будет решена даже без амперметра-индикатора.

Источник



Как измерить ток в цепи с любой точностью

как измерить ток с любой точностью

В ряде случаев возникает необходимость в измерении тока. Например, при контроле тока отдаваемого источником питания в нагрузку или при измерениях. Конечно можно воспользоваться мультиметром, однако его точность не так велика. Рассмотрим, как измерить ток в любой цепи..

  1. Как измерить ток
  2. Резистор не должен ограничивать ток в цепи
  3. Выделяемая на резисторе мощность
  4. Точность снятие напряжения
  5. Высокоточные измерения
  6. Заключение

Как измерить ток

Измерить напрямую величину тока невозможно. Для измерения величины протекающего тока, в разрыв цепи устанавливается низкоомный резистор, на котором измеряется падение напряжения.

Аналогичным образом работает и обычный стрелочный амперметр, показанный в обложке статьи. Он представляет из себя вольтметр, шунтированный низкоомной проволочкой. Но сегодня стрелочные приборы уже не так актуальны.

Рассмотрим как измерить ток источника питания через нагрузку. Однако таким же образом можно мерить ток в любой цепи, в которую вы засунете резистор.

Обычно резистор для измерения тока устанавливается в разрыв между нагрузкой и землей. Падение напряжения снимается на выводах этого резистора, т.е. между точками A и B :

как измерить ток с любой точностью

Зная сопротивление резистора и величину падения напряжения на нем, по закону дедушки Ома не составит труда посчитать ток в цепи:

закона Ома

Из закона Ома следует, что при токе величиной в 1 Ампер на резисторе, сопротивлением в 1 Ом будет падать 1 Вольт.

В качестве резистора можно использовать и отрезок проволоки из метала с высоким удельным сопротивлением. Например из константана. Добыть такую проволоку можно из проволочного переменного резистора.

На деле лучше использовать резисторы с сопротивлением меньше 1 Ома. При выборе конкретной величины сопротивления резистора следует учитывать несколько важных моментов, которые мы сейчас и рассмотрим.

Резистор не должен ограничивать ток в цепи

Допустим у нас имеется источник постоянного напряжения в 4 вольта, который может давать ток до 1 Ампера. В таком случае можно использовать резистор в 1 Ом.

Найти максимальный ток через резистор можно из того же закона Ома:

I = 4В / 1Ом = 4 A.

Максимальный ток источника ограничивается 1 Ампером, соответственно ограничение в 4 Ампера его в принципе не касается. Однако лучше взять резистор меньшего номинала. Почему? Вникаем дальше.

Выделяемая на резисторе мощность

Чем больше величина резистора, тем проще и точнее можно измерить падающее на нем напряжение, а следовательно и ток. Но обязательно стоит учитывать мощность, которая будет выделяться на резисторе в виде тепла. Мощность (P) находится из соотношения:

P = R*I2

Для примера, если предполагается измерять токи, величиной около 10 Ампер, то на резисторе сопротивлением всего 0.1 Ом будет может выделяться около 10 Ватт тепловой энергии.

Учитывая хотя бы двухкратный запас по мощности, для нормальной работы потребуется резистор мощностью в 20Ватт, а еще лучше на 50 Ватт. Проволочный резистор такой мощности выглядит например так:

резистор на 50 ватт

Использовать кипятильник таких размеров, крайне нерезонно по двум причинам:

  • Резистор будет сильно греться, а изменение температуры вызовет изменение сопротивления.
  • Такой резистор создаст приличную дополнительную нагрузку для источника в те самые 10 ватт.

Логичнее использовать резистор сопротивлением 0.01 Ом и мощностью в 2 или 3 ватта. А еще лучше использовать маломощный прецизионный резистор сопротивлением 0.001 Ом.

Точность снятие напряжения

Использование резистора со столь малым сопротивлением вызывает некоторые трудности с измерениями. Величина падения напряжения на нем может лежать не намного выше уровня шумов.

По этой причине снимать падение напряжения необходимо не относительно земли, а непосредственно между выводами резистора (точки A и B ), как это было показано выше. Иначе сопротивление соединений и наводки на них могут дать ошибку измерений более 10%.

Наилучшим решением для снятия разности напряжений между двумя точками является дифференциальный усилитель. Он обладает симметричным входом, благодаря чему хорошо подавляет синфазные помехи.

как измерить ток с любой точностью

Так же усилитель имеет огромное входное сопротивление, исключающее шунтирование измерительного резистора. При этом усилитель обладает низким выходным сопротивлением и к нему можно смело подключать любой вольтметр для зрительного контроля. Подробному рассмотрению схемы дифференциального усилителя посвящена отдельная статья.

Применительно к нашему случаю общая схема для измерения тока выглядит следующим образом:

как измерить ток с любой точностью

Коэффициент усиления следует подбирать исходя из собственных нужд. Например, если необходимо измерять токи до 10 Ампер используя резистор 0.01 Ом, то максимальное падение напряжения на нем составит не более 0.1 вольта.

Установив коэффициент усиления равным 100, мы получим, что каждый вольт на выходе усилителя равен 1 амперу в измеряемой цепи.

Высокоточные измерения

Если вам требуется высокая точность измерений, то в описанной схеме необходимо применять прецизионные детали. В частности резисторы точностью не хуже 1% и операционный усилитель на подобии AD8066, AD8116, OPA2132 и тд. Но можно ограничиться и применением NE5532

Еще бОльшую точность при измерении тока даст применение инструментального усилителя:

как измерить ток с любой точностью

Он является более совершенной версией описанного дифференциального усилителя. Это особенно актуально в случае использовании измерительного резистора сопротивлением 0.001 Ом.

Заключение

Рассмотренный способ измерения тока является классическим и применяется повсеместно. Таким образом можно производить измерение тока практически в любой цепи и с любой точностью. В одной из следующих статей будет показано, как измерить ток если он переменный.

Не стесняйтесь делиться своим мнением в комментариях 🙂

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Источник