Меню

Как найти ток ветви источниками тока

Как найти ток ветви источниками тока

Метод токов ветвей

Первый и самый простой метод анализа цепей постоянного тока называется методом токов ветвей. В этом методе нам сначала нужно определить направления токов в цепи, а затем написать уравнения, описывающие их отношения друг с другом через законы Кирхгофа и Ома. Как только мы получим уравнения для каждого из неизвестных токов, мы сможем решить систему уравнений, рассчитав тем самым все токи, а затем и все напряжения в цепи.

Для рассмотрения метода мы будем использовать следующую схему:

analiz5

Первое что нам нужно сделать — это выбрать узел цепи (место соединения проводов), который будет использоваться в качестве точки отсчета для поиска неизвестных токов. Мы выберем узел, соединяющий резистор R1 справа, R2 снизу и R3 слева.

analiz6

Теперь нам нужно проставить направления токов в примыкающих к этому узлу проводах, обозначив их I1, I2 и I3 соответственно. Имейте ввиду, эти направления будут только предполагаемыми. Если выяснится, что наши предположения оказались ошибочными, то мы это увидим в процессе математического расчета (любые «неправильные» направления токов отобразятся в виде отрицательных чисел).

analiz7

Согласно Первому Закону Кирхгофа, алгебраическая сумма токов входящих в узел и выходящих из него должна быть равна нулю, поэтому мы можем связать все токи нашей схемы (I1, I2 и I3) друг с другом при помощи одного уравнения. Все входящие в узел токи мы обозначим знаком «плюс», а выходящие из него — знаком «минус»:

analiz8

На следующем шаге нам нужно промаркировать полярности напряжений всех резисторов в соответствии с предполагаемыми направлениями токов. Конец резистора, в который ток втекает — будет отрицательным, а из которого вытекает — будет положительным (электрон заряжен отрицательно, и течет от минуса к плюсу):

analiz9

Полярность батареи проставляется в соответствии со стандартом (короткий конец — отрицательный, длинный конец — положительный). В некоторых случаях вы можете обнаружить, что полярность резисторов не соответствует полярности батареи, а ток течет обратно через батарею. Ничего страшного, это только предполагаемое направление тока. Здесь важно помнить, что простановку полярности напряжений на резисторах и последующие расчеты нужно производить по изначально предполагаемым направлениям токов. Как отмечалось ранее, если ваши предположения окажутся неверными, то вы увидите это по окончательным результатам расчетов (они будут отрицательными). Сами же полученные величины все равно будут правильными.

Согласно Второму Закону Кирхгофа, алгебраическая сумма всех напряжений цепи должна равняться нулю. Исходя из этого, мы сможем создать несколько уравнений для нашей системы, подставив в них неизвестные значения токов (I1, I2 и I3). Для получения уравнений Второго Закона Кирхгофа нам нужно знать количество и полярность напряжений в каждой из ветвей цепи. В целях облегчения данной задачи давайте представим, что мы измерили все напряжения реальным вольтметром, обозначив неизвестные значения как положительное или отрицательное напряжение. Сначала мы создадим уравнение для левой ветви схемы, взяв за точку отсчета верхний левый угол, и двигаясь против часовой стрелки (выбор точки отсчета и направление — произвольны). Результат будет выглядеть следующим образом:

analiz10

analiz12

analiz13

analiz14

Закончив исследование левой ветви схемы, мы можем применить к полученным значениям Второй Закон Кирхгофа (сумма всех напряжений цепи равна нулю):

analiz15

Нам еще неизвестны значения напряжений на резисторах R1 и R2, поэтому мы не можем вставить их в уравнение в виде числовых величин. Однако, мы знаем, что сумма этих трех напряжений равна нулю, поэтому уравнение верно. Теперь пойдем дальше, и выразим неизвестные напряжения как произведение неизвестных токов и соответствующих им сопротивлений (применив Закон Ома: U = IR), а так же уберем все нулевые значения из левой части уравнения:

analiz16

Поскольку нам известны сопротивления всех резисторов, давайте подставим в уравнение конкретные числовые значения:

analiz17

У вас наверняка возник вопрос: зачем мы произвели все эти манипулирования с первоначальным видом уравнения (-28 + ER2 + ER1)? Какая разница в чем будет выражено уравнение, в напряжении или в токе (умноженном на сопротивление), если в обоих случаях последние два члена до сих пор неизвестны? Ответ на данные вопросы прост. Целью всех выше приведенных преобразований является получение уравнения Второго Закона Кирхгофа с использованием тех же неизвестных переменных, что и в уравнении Первого Закона Кирхгофа, так как это является необходимым условием для решения любой системы уравнений. Чтобы найти значения трех неизвестных токов (I1, I2 и I3), у нас должно быть три уравнения, связывающих их вместе.

Применив те же самые действия к правой ветви схемы (начиная с выбранного узла и двигаясь против часовой стрелки), мы получим еще одно уравнение Второго Закона Кирхгофа:

analiz18

analiz19

analiz20

analiz21

analiz22

Зная, что напряжение на каждом из резисторов может и должно быть выражено как произведение соответствующих токов и сопротивлений (величина которых известна), мы можем переписать это уравнение следующим образом:

analiz23

Теперь у нас есть система из трех уравнений (одно уравнение Первого и два уравнения Второго Законов Кирхгофа) с тремя неизвестными:

analiz24

Далее нам нужно перенести все известные величины в правые части уравнений, а неизвестные оставить в левой, дополнив их отсутствующими нулевыми значениями:

analiz25

Решив эту систему уравнений мы получим следующий результат:

analiz26

Таким образом, ток I1 равен 5 амперам, ток I2 равен 4 амперам и ток I3 равен минус 1 амперу. Отрицательное значение тока I3 означает что наше предположение по его направлению оказалось неверным. Давайте вернемся к первоначальной схеме и перерисуем стрелку этого тока на противоположное направление (исправив соответственно полярность напряжения на резисторе R3):

analiz27

Обратите внимание на тот факт, что в правой ветви схемы ток течет обратно через батарею 2. Это происходит благодаря более высокому напряжению батареи 1 (в которой ток течет «как обычно» — через цепь от минуса к плюсу). Означает ли это, что более «сильная» батарея всегда будет «побеждать» более слабую. Вовсе нет! Данный фактор зависит как от относительных напряжений батарей, так и от сопротивлений резисторов цепи. Единственным способом установления происходящих в цепи процессов является математический анализ.

Итак, величины всех токов данной цепи нам известны. Теперь, при помощи Закона Ома (U = IR), можно рассчитать напряжения на всех ее резисторах:

analiz28

Давайте теперь проанализируем эту схему при помощи программы PSPICE, проверив тем самым полученные результаты для напряжений. Данная программа, конечно, сможет рассчитать и токи, но тогда нам потребуется включить в схему дополнительные компоненты. Принимая во внимание этот факт, мы с вами пойдем по пути наименьшего сопротивления (если выданные программой значения напряжений совпадут с нашими расчетами, то и токи мы рассчитали правильно). Схема с номерами узлов для программы представлена ниже:

Читайте также:  Қандай топқа қарағанда айнымалы ток генераторы мен қозғалғыштық құрылымы қарапайым болып келеді

analiz29

analiz30

Как видите, результаты работы программы совпадают с нашими рассчетами: 20 вольт на резисторе R1 (узлы 1 и 2), 8 вольт на резисторе R2 (узлы 2 и 0) и 1 вольт на резисторе R3 (узлы 2 и 3). Обратите внимание на знаки всех этих напряжений: они имеют положительные значения! PSPICE основывает свою полярность на порядке, в котором перечислены узлы: первый узел должен быть положительным, а второй — отрицательным. Например, положительное (+) напряжение 20 вольт между узлами 1 и 2 означает, что узел 1 является положительным по отношению к узлу 2. Если бы число получилось отрицательным, то то ошибку следовало бы искать в порядке перечисления узлов.

Источник

Как найти ток ветви источниками тока

Возьмем два участка цепи a b и c d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.

Объединяя оба случая, получим

или для постоянного тока

Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.

Основы символического метода расчета цепей
синусоидального тока

Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.

Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.

Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.

1. Первый закон Кирхгофа в комплексной форме:

2. Второй закон Кирхгофа в комплексной форме:

или применительно к схемам замещения с источниками ЭДС

3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:

§ первый закон Кирхгофа:

§ второй закон Кирхгофа

Определить:
1) полное комплексное сопротивление цепи ;
2) токи

4. Принимая начальную фазу напряжения за нуль, запишем:

5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то

7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме

или после подстановки численных значений параметров схемы

Специальные методы расчета

Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета, к которым относятся методы контурных токов и узловых потенциалов.

Метод контурных токов

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. Их выбор облегчает использование топологических понятий дерева и ветвей связи.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

Пусть имеем схему по рис. 3.

Выразим токи ветвей через контурные токи:

Обойдя контур aeda , по второму закону Кирхгофа имеем

Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:

совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.

Однако данная система уравнений может быть составлена формальным путем:

При составлении уравнений необходимо помнить следующее:

— сумма сопротивлений, входящих в i —й контур;

— сумма сопротивлений, общих для i —го и k —го контуров, причем ;

члены на главной диагонали всегда пишутся со знаком “+”;

знак “+” перед остальными членами ставится в случае, если через общее сопротивление i —й и k — й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

если i —й и k — й контуры не имеют общих сопротивлений, то ;

в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.

В нашем случае, для первого уравнения системы, имеем:

Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.

Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k — й контурный ток, проходящий через ветвь с k — м источником тока равен этому току .

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Пусть имеем схему по рис. 4, в которой примем .

Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС

Запишем уравнение по первому закону Кирхгофа для узла а :

и подставим значения входящих в него токов, определенных выше:

Читайте также:  Защита от поражения электрическим током при сварке

Сгруппировав соответствующие члены, получим:

Аналогично можно записать для узла b :

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i —го уравнения записывается со знаком “+”потенциал i —го узла, для которого составляется данное i —е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i —му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i —му и k —му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2. В правой части i —го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i —му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i —му узлу, в противном случае ставится знак “-”. Если в подходящих к i —му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.

1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с

Контрольные вопросы и задачи

1. В ветви на рис. 1 . Определить ток .

2. В чем заключается сущность символического метода расчета цепей синусоидального тока?

3. В чем состоит сущность метода контурных токов?

4. В чем состоит сущность метода узловых потенциалов?

; . Методом контурных токов определить комплексы действующих значений токов ветвей.

6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.

Источник

1.3 Метод контурных токов

1.3 Метод контурных токов

В методе контурных токов за основные неизвестные величины принимают контурные токи, которые замыкаются только по независимым контурам (главным контурам). Контурные токи находят, решая систему уравнений, составленную по второму закону Кирхгофа для каждого контура. По найденным контурным токам определяют токи ветвей схемы.

Алгоритмом метода контурных токов:

1. Задаются направлением токов ветвей и обозначают их на схеме.

2. Определяют независимые контуры и их нумеруют. При наличии в схеме источников тока независимые контуры, для которых составляются уравнения метода контурных токов, можно определить, если мысленно удалить источники тока.

3. Выбирают направление контурных токов (целесообразно в одну сторону) и составляют уравнения по методу контурных токов, обходя каждый контур в направлении его контурного тока. Контурный ток, проходящий через источник тока, известен и равен току источника тока (через источник тока проходит только один контурный ток!).

4. Полученную систему алгебраических уравнений решают относительно неизвестных контурных токов.

5. Искомые токи по методу контурных токов находят как алгебраическую сумму контурных токов, проходящих по данной ветви. Токи в ветвях связи равны контурным токам.

Решение задач методом контурных токов

Задача 1.3.1 . Определить токи в ветвях схемы рис. 1.3.1 методом контурных токов. Правильность решения проверить по балансу мощностей.

1. В соответствии с алгоритмом, зададимся направлением токов ветвей и обозначим их на схеме рис. 1.3.1.

3. Поскольку в схеме имеется ветвь, содержащая источник тока J, контурный ток Iк3 = J, а для контурных токов Iк1 и Iк2 запишем систему уравнений метода контурных токов:

Подставив значения сопротивлений, получаем численную систему уравнений метода контурных токов с двумя неизвестными контурными токами:

I к 1 = 0,4 A ; I к 2 = 3 A .

4. Определяем токи в ветвях схемы по методу контурных токов:

I 1 = I к 1 = 0,4 A ; I 5 = − I к 2 = − 3 A ; I 6 = I к 2 − I к 1 = 3 − 0,4 = 2,6 A .

для узла a:

I 4 = I 5 + J = ( − 3 ) + 2 = − 1 A ;

для узла b:

I 3 = J − I 1 = 2 − 0,4 = 1,6 A .

5. Правильность решения проверяем по балансу мощностей. Предварительно находим напряжение на зажимах источника тока:

U a d = φ a − φ d = J ⋅ R 2 + I 3 ⋅ R 3 + I 4 ⋅ R 4 − E 2 = = 2 ⋅ 10 + 1,6 ⋅ 20 + ( − 1 ) ⋅ 5 − 10 = 37 B .

E 2 ⋅ J + U a d ⋅ J + E 1 ⋅ ( − I 1 ) + E 6 ⋅ I 6 = J 2 ⋅ R 2 + I 3 2 ⋅ R 3 + I 4 2 ⋅ R 4 + I 5 2 ⋅ R 5 + I 6 2 ⋅ R 6 ; 10 ⋅ 2 + 37 ⋅ 2 + 15 ⋅ ( − 0,4 ) + 30 ⋅ 2,6 = 2 2 ⋅ 10 + 1,6 2 ⋅ 20 + ( − 1 ) 2 ⋅ 5 + ( − 3 ) 2 ⋅ 4 + 2,6 2 ⋅ 5 ; 166 В т = 166 В т .

Источник



Основы электротехники и электроники: Курс лекций , страница 8

Подставим уравнения (11.2-11.4) в (11.1):

Теперь запишем уравнение по закону Ома для эквивалентной ветви (Рис. 11.1 б):

Из сравнения (11.6) и (11.5) очевидны соотношения для параметров эквивалентной цепи:

Обобщим формулы (11.7) и (11.8) на произвольное количество параллельных ветвей.

Итак, параллельные ветви с источниками энергии можно заменить одной эквивалентной ветвью, содержащей последовательно включенные сопротивление и ЭДС. При этом проводимость эквивалентной ветви равна арифметической сумме проводимостей всех ветвей:

Эквивалентная ЭДС равна дроби, в знаменателе которой – сумма проводимостей всех ветвей (как активных, так и пассивных). В числителе – алгебраическая сумма источников тока плюс алгебраическая сумма произведений ЭДС на проводимость своей ветви:

где p – число ветвей с ЭДС;

k – число ветвей с источниками тока;

n – число всех ветвей.

В выражении (11.10) с плюсом берутся те ЭДС и источники тока, которые совпадают по направлению с эквивалентной ЭДС, с минусом – противоположные.

Пример 11.1: Найти ток I3 (Рис. 11.2).

Исходную цепь преобразуем, свернув две активные ветви в одну эквивалентную. При этом ветвь с током I3 преобразованию не подвергнется, а значит, не изменится ток в ней (Рис. 11.3):

Параметры эквивалентной ветви:

Очевидно, что в преобразованной схеме (Рис. 11.3) ток I3 легко определяется по закону Ома:

12. ВЫНЕСЕНИЕ ЭДС И ИСТОЧНИКА ТОКА ИЗ ВЕТВИ

В сложной цепи имеется ветвь с нулевым сопротивлением и идеальной ЭДС (Рис. 12.1).

Читайте также:  Что называется электромагнитным полем протекающего тока

Требуется преобразовать цепь таким образом, чтобы в ней не было ветви с нулевым сопротивлением. Сделать это можно, удалив ЭДС E из ветви. Тогда потенциалы узлов d и o будут равны, эти узлы можно будет объединить и ветвь с нулевым сопротивлением исчезнет.

Идеальная ЭДС E располагается между узлами d и o. Добавим во все ветви, примыкающие к узлу o, такие же ЭДС E, но направленные не к узлу, а от узла (Рис. 12.2). Очевидно, что при этом изменится потенциал узла o, но потенциалы узлов a, b, c и d останутся неизменными.

Теперь в ветви с нулевым сопротивлением имеются две равные и противоположно направленные ЭДС. Они компенсируют друг друга, и их можно удалить из ветви (Рис. 12.3).

Узлы, соединенные ветвью с нулевым сопротивлением, не содержащей ЭДС, можно объединить. Новый узел будет иметь тот же потенциал, что и у узла d до преобразования. Таким образом, из схемы исключена ветвь с нулевым сопротивлением и узел o (Рис. 12.4).

Такая операция называется вынесением ЭДС из ветви за узел. При вынесении ЭДС из ветви за узел вместо исходной ЭДС появляются точно такие же ЭДС в остальных ветвях, примыкающих к узлу, но ориентированные противоположно (если исходная ЭДС была направлена к узлу, то ЭДС в эквивалентной схеме направлены от узла, и наоборот).

Заметим, что вынесение ЭДС из ветви за узел применимо к любым ветвям, а не только к ветвям с нулевым сопротивлением.

Для вынесения источника тока из ветви достаточно включить точно такие же источники тока параллельно другим ветвям, но так, чтобы не изменилось токораспределение в схеме.

Вынести из ветви источник тока (Рис. 12.5).

Ток источника Jk вытекает из узла c и втекает в узел d. Значит, и в преобразованной схеме ток Jk должен вытекать из узла c и втекать в узел d (Рис. 12.6).

Но если, например, в узел a будет втекать ток Jk и одновременно вытекать ток Jk (Рис. 12.7), распределение токов в схеме не изменится.

Вышеприведенные рассуждения позволяют нам включить два источника тока параллельно ветвям с резисторами R1 и R3 (Рис. 12.8).

13. МЕТОД УЗЛОВЫХ ПОТЕНЦИАЛОВ

Для расчета токов в электрической цепи достаточно знать потенциалы всех узлов. Тогда с помощью закона Ома можно найти токи.

Электрическая цепь – это система ветвей, соединенных друг с другом узлами. Каждая ветвь упирается своими концами в два узла. Справедливо и обратное утверждение: любые два узла цепи соединяются друг с другом ветвью. Это утверждение поможет нам разработать алгоритм определения потенциалов узлов.

Представим задачу в наиболее общем виде. Пусть в узле n соединяется множество ветвей. При этом каждая ветвь на своем противоположном конце также заканчивается узлом (Рис. 13.1).

Все ветви цепи можно условно разбить на три группы.

Первая – ветви, содержащие ЭДС и обладающие конечной проводимостью. Заметим, что к этой же группе можно отнести ветви с конечной проводимостью без ЭДС. Такие ветви будем обозначать индексом i (Рис. 13.2 а).

Вторая – ветви, содержащие источники тока. Проводимость этих ветвей равна нулю. Такие ветви будем обозначать индексом k (Рис. 13.2 б).

Третья – ветви с ЭДС и нулевым сопротивлением. Проводимость этих ветвей бесконечно велика. Как было показано выше, такие ветви всегда можно устранить из схемы путем вынесения ЭДС из ветви за узел. Поэтому в дальнейшем будем рассматривать цепь, в которой нет ветвей с ЭДС и нулевым сопротивлением.

Пусть в узле n соединяются i‑ые и k‑ые ветви. Обозначим узлы, противоположные узлу n, индексами i и k (Рис. 13.3). Само собой разумеется, количество i‑ых и k‑ых ветвей может быть каким угодно.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник