Меню

Как ограничить ток источника питания

Использование термисторов для ограничения бросков тока в источниках питания

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Термистор
Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.

ТКС термистора
Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном — номинальное сопротивление термистора при температуре 25°С

Iмакс — максимальный ток через термистор (максимальный установившийся ток)

Смакс — максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Источник

Как ограничить ток источника питания

ДОБАВЛЕНО 21/12/2009 22:39

мощность тебе мешать не должна

antisleep

Тогда немного по другому вопрос, БП использается для заряда аккумуляторов, а там как раз и нужно ограничить ток

параметры акумулятора — в студию

ДОБАВЛЕНО 21/12/2009 22:57

есть режим зарядки напряжением, например как в автомобиля

antisleep

Автоаккумуляторы и хотелось бы заряжать, если приспичит, а те схемы переделки что в инете без регулировке выходного тока! При подключении напрямую ток зарядки до 10А, начинает кипеть аккумулятор, а вот если б его ограничить.

antisleep, эта тема есть в инэте , сейчас по быстрому не нашел, а завтра на работе в закладках погляжу и выложу (очень удобно к тому же все давно решено)

antisleep

Давай, спасибо, а то решений полно, но все без регулировке по току

поставь реостат \сопротивление резистор\

ДОБАВЛЕНО 22/12/2009 00:09

я формулу давал нагрузка+резистор вот тебе и ток. только не забывай про мощностьт сопра. самый простой вариант. если надо отправлю электронную схему

antisleep

реостат? 12В 10А 120Вт эт какой же реостат

В старых промышленных зарядниках ток устанавливали, меняя напряжение вторичной обмотки. Почему в этом случае нельзя сделать так(менять напряжение в пределах 13-14-15.. вольт?

IIK тебе прально пишет. извини я не пойму твою конфигурацию. напиши акумулятор по току, бп на выходе , и ток какой тебе нужен

ДОБАВЛЕНО 22/12/2009 01:25

я тебе подрасчитаю

ДОБАВЛЕНО 22/12/2009 01:38

антислип давай бегом у меня смена заканчивается

ДОБАВЛЕНО 22/12/2009 01:43

antisleep

ДОБАВЛЕНО 22/12/2009 01:25

я тебе подрасчитаю

ДОБАВЛЕНО 22/12/2009 01:38

антислип давай бегом у меня смена заканчивается

ДОБАВЛЕНО 22/12/2009 01:43

Аккумулятор 12В 55Ач. Мне нужно чтобы на выходе БП регулировать ток

0. 5А. Если без регулировки подключить напрямую БП к аккумулятору, то ток 10А протекает через него, аккумулятор кипит.

antisleep, уже обяснили заком Ома, что непонятного? Чтобы регулировать ток, надо регулировать выходное напряжение блока питания. У компьтерного БП есть цепь обратной связи для стабилизации выходных напряжений. Если изменять напряжение обратной связи на входе усилителя ошибки, то можно изменять выходные напряжения.

antisleep

Тогда напряжение на выходе тоже будет меняться? Мне нужно постоянное напряжение на выходе, а менять только мощность. На выходе я сделал 14,4В, нужно чтоб можно было регулировать ток. Для многих из вас я задаю может и глупые вопросы, просто мне интерестно, с импульсниками только начал работать. Мой БП на KA7500, по даташиту у него два усилителя ошибки(если я правильно говорю), по входу первого усилителя изменением сопротивления от +12(который сейчас +14.4) я могу регулировать выходное напряжение. Может второй для регулировки тока?

Объясню еще раз закон Ома. U = I x R. Реши свою же задачу по этой формуле.
R — сопротивление аккумулятора оно постоянно и изменяется медленно только в процессе зарядки. Принимаем начальное значение 3 (три) ома.
I — ток, должен регулироваться от 0 до 5 ампер.
Даже невооруженным глазом видно, что напряжение при заданном диапазоне изменения тока будет равно 0. 15 вольт.
Надеюсь закон Ома стал понятен?
В БП с ШИМ КА7500 обратная связь приходит на 1 вывод.

antisleep

А разве в ЗУ для аккумулятора напряжение на выходе не должно быть постоянным?

antisleep, на этих приборах когда-то делали зарядки ИМЕННО для авто-аккумуляторов:
http://www.google.com/search?q=%D0%B1%D0%B0%D1%80%D0%B5%D1%82%D1%82%D0%B5%D1%80&sourceid=ie7&rls=com.microsoft:en-US&ie=utf8&oe=utf8

antisleep

Только вот должен тебя несколько расстроить. 12-и вольтовый акк при зарядке стабильным током от 12 же вольтового ИП всегда будет несколько недозаряжен. Например, при указанных выше условиях, ток начнёт экспоненциально уменьшаться при зарядке акка до напряжения 11 В (и это без учёта напряжения на самом стабилизаторе тока — с его учётом ещё раньше). Так что для обеспечения полной «заливки» акка напряжение на выходе ИП должно быть несколько больше напряжения полного заряда акка, плюс падение напряжения на стабилизаторе тока учесть надо. Итого, вольт 17 на выходе БП в общем случае тебе должно хватить. Ес-сно, для исключения перезаряда акка надо предусмотреть цепь контроля напряжения на аккумуляторе, желательно — с автоотключением зарядки (или переводом в режим тренировки «заряд-разряд»).

antisleep

ё, в натуре философ )))) Целая лекция, В принципе напряжение на выходе у меня регулируется, переменник на первой ноге, я напряжение выстовил как бортовая сеть авто 14,4В, а вот ток в 15А чет жестковато для аккумулятора, вот имучаю форумчан как его регулировать. Неделю в инете ищу какой нибудь регулятор тока, но ниче хорошего нет, в большинстве предлагают схемы на теристоре, но для импульсника не катит, вот и не знаю че придумать.

Читайте также:  Преобразование солнечной энергии в ток

antisleep, извиняюсь, плохо знаком со схемотехникой комповых БП — не в курсе, ОС по напряжению в них сделана с 5 или 12 В, но в крайнем случае можно перекинуть её на 12 В.

Зачем? А просто регулировка по току на импульсных БП делается очень просто: последовательно с нагрузкой включается токовый датчик (шунт), падение напряжение на котором управляет сигналом ошибки (подменяя в этом режиме цепь регулирования выходного напряжения). При этом цепь контроля выходного напряжения не отменяется — просто она в это время не срабатывает — как я уже писал — напряжение при стабилизации тока растёт само — вместе с увеличением напряжения на аккумуляторе. А начнёт срабатывать штатная обр. связь по напряжению при достижении МАКСИМАЛЬНОГО напряжения заряда акка, и источник питания из источника тока превратится в источник напряжения. Выходное напряжение ИП сравняется с напряжением на акке, и заряд прекратится (по сути, получится просто параллельное соединение двух ИП — импульсника и акка. То же произойдёт при обрыве цепи акка — ИП не пойдёт «вразнос», ограничив напряжение на своём выходе в соответствии с заданием ОС по напряжению.

Хотя, по уму, ОС по напряжению лучше было бы подать на триггерный отключатель — но тогда при случайных обрывах заряд будет прекращаться намертво, а без акка на выходе такой ИП вообще не включишь. Врпочем, именно такой режим УМЫШЛЕННО реализован во некоторых вполне даже линейных (не импульсных) промышленных ЗУ: они не включаются как в отсутствие акка, так и при подключении «убитого» (переразряженного) акка, у которого остаточное напряжение меньше паспортного минимума.

Насчёт принципа регулирования тока в ИБП, копни Гугль на предмет поиска проектов Engineering Design на МС серии TOP2xx — попадался как-то проект такого зарядного устройства. В принципе, первичная цепь оттуда тебе не нужна, а вот вторичная, с ОС по току и напряжению — можно выдрать вчистую. Впрочем, буду посвободнее — могу сам копнуть. Кстати. описанное решение не только упрощает зарядное устройство, делая ненужным отдельный регулятор тока, но и повышает его КПД — уж больно эти аналоговые регуляторы тока любят воздух погреть (кстати, правильно они называются «источники тока» или «стабилизаторы тока», с чем может быть связан твой крах в поисках схемы).

ДОБАВЛЕНО 23/12/2009 21:38 PM

antisleep писал:
ё, в натуре философ )))) Целая лекция

А я лентяй.

Мне легче написать подробно одному, и потом всех остальных непросвещённых к этому посту отправлять, чем каждому по 10-20 постов отрывками лепить. Лень, как известно — двигатель прогресса, только лениться надо с умом.

antisleep

Я так и сделал, перекинул ее с 5 вольт на 12 и поставил переменник, теперь я могу регулировать выходное напряжение (установил на 14,4), пришлось отключить защиту, тупа перерезал проводник на плате, без этого при подключении нагрузки блок питания вырубался. Я в инете пытался найта какой нибудь регулятор тока, но ниче путного я так и не нашел, так как регуляторы тока либо маломощные, либа для трансформаторных блоков. В общем завис пока, не знаю как решить проблему с регулировкой по тока, сам только начал работать с импульсниками.

antisleep, извиняюсь — затупил я малость. Искать надо было не «Engineering Design», а «Design Idea». Вовремя вспомнил бы — быстрее бы нашёл.

Высоковольтная часть схемы тебе не нужна, она у тебя ужо е. А вот вторичная — хоть и нуждается в переработке под твои нужды (оригинальная схемка всего 16 Вт — т.е обеспечит зарядный ток для 12 В акка всего 1 А), тем не менее весьма удачно решена.

А ручной регулятор напряжения выкинь нафиг — напряжение, как я уже писал (если ты читал опус на предыдущей странице), будет изменяться по мере зарядки автоматически.

antisleep, есть вариант ограничить зарядный ток в пределах 5-10А. Потребуется небольшая доработка БП. Некоторые выводы микросхемы отрезаются от дальнейшей схемы, меняются элементы на другие, добавляется 1 транзистор типа кт361, несколько резисторов и датчик тока — 0,2-0,005 Ом. Пока полностью (на 100%) не проверена схема, но ток ограничивает реально. Вопрос возникает при глубоко разряженных аккумуляторах: сможет ли БП поддерживать заданны ток или просто уйдет в защиту. Когда смогу отсканировать схему — предоставлю.

amatti73

Сам долго мучался с регулировкой тока.
Вот тебе схема- пользуйся, а всем остальным — не хе. р флудить, Вас же чел конкретной помощи просит.

agent007

можно еще так

amatti73

И эта схемка вроде ниче. и как я понимаю за счет компараторов выбирается больший по уровню регулятор либо тока либо напруги. НУ, вроде процесс пошел, сиди да паяй.
Я себе еще поставил цифровые вольтметр и амперметр, защиту от переполюсовки по проводу PG, поменял мост и кондеры по цепи +12В ( а то у меня регулируется напруга от 6 до 15.6Вольт а ток от 0 до 10Ампер).

amatti73, можно один вопрос? Как я понимаю, нижняя часть схемы (на LM2577) добавляется к БП и от нее можно отказаться. Эта схема прошла реальную обкатку? А как ведет он себя с аккумуляторами, получившими глубокую разрядку?

amatti73

Да от нижней схемы можно смело отказаться , т.к. она нужна фактически для тихой и пропорциональной нагрузке работе вентилятора — это так сказать наворот далеко не всегда нужный. Для подключения к глубоко разряженной батарее и применяется схема на проводе PG
Вот ссылка
http://www.samodelkin.komi.ru/electron/zarbp.html

agent007

ДОБАВЛЕНО 11/01/2010 07:05

извиняюсь сразу не увидел термушки

Спасибо за ссылку, amatti73. Надо реализовать. Вопрос agent007: предложенная схема реализовывалась практически?

amatti73

Добрый вечер, господа! Как и обещал, предлагаю еще один вариант доработки БП. О своих экспериментах по этой схеме отпишусь позже. Какое мнение о ней?

Yurik L, а где вариант-то?

Извиняюсь, не получилось вечером присоединить файл. Пробую сейчас

Привет, коллеги! Какие мысли по поводу предложеной доработки?
Кратко опишу, что у меня получилось. БП на 200 Вт, по 12В — 8А. По указанной методике, подключая внешний источник и т.д., ток у меня получился 7,5А, такой нашел шунт. Подобрал нагрузку на ток 8,5 А (лампочки и резистор). Когда подключил, реальный ток был 6А, напряжение тоже понизилось. Не было под руками второго тестера, полагаю вольт 11-12, а настроен был на 14,2В. БП в защиту не уходит, ток ограничивает, при большом токе несколько понижается напряжение.
Думаю, аккумуляторы можно заряжать. Ваше мнение?

amatti73

Не совсем понятно КАКОЙ доработки. По какой схеме делал — по своей, которую тут выкладывал или по нашим? От этого многое зависит.

ДОБАВЛЕНО 15/01/2010 23:22

Если по той что ты выложил — будет садить питание. 100% Ты же не можешь упрапвлять-стабилизировать и ток и напряжение только на выв2. У тебя же 15 нога вообще не задействована.

Источник

Ограничитель тока в электрических и электронных сетях

Понятие ограничитель тока

Ограничитель тока (ОТ) — устройство, которое применяется в электрических или электронных схемах для снижения верхнего предела постоянного (DC) или переменного (АС) тока, поступающего к нагрузке. Этим обеспечивается своевременная надёжная защита схем генерации или электронных систем от вредных воздействий из-за короткого замыкания в сети или других негативных процессов, приводящих к резкому росту АС/DC.

  • Типы ограничивающих устройств
  • Ограничитель тока нагрузки в электросетях
  • Применение токозащиты в электронных схемах
  • Типы токоограничивающих диодов
  • Схема ограничения постоянного тока
  • Ограничитель с обратной связью
  • Области применения токоограничивающих диодов

Методы ограничения используются для контроля количества тока, протекающего в постоянной или переменной цепи. Устройство гарантирует, что в случае превышения его граничного размера защита надёжно и своевременно сработает. Токоограничивающие устройства могут применяться в различных модификациях в зависимости от чувствительности, нормативной токовой нагрузки, времени отклика и возможных причин возникновения короткого замыкания в сети.

Избыточный АС/DC может возникать во внутренней цепи из-за короткозамкнутых компонентов, таких как диоды, транзисторы, конденсаторы или трансформаторы, а также проблем внешнего характера при перегрузке сетевых объектов, в замыкающей цепи или перенапряжение на входных клеммах питания.

Типы ограничивающих устройств

Выбор защитных устройств зависит от нескольких факторов. Приборы бывают пассивные и активные, могут использоваться индивидуально или в виде комбинации. Обычно ограничитель соединяют последовательно с нагрузкой.

Виды ограничивающих устройств:

Схема тока

  1. Предохранители и резисторы. Они используются для простого ограничения тока. Предохранитель обычно срабатывает, если его АС/DC превышает номинальный размер. Резисторы интегрированы в конструкцию схемы. Правильное значение сопротивления можно рассчитать и с использованием закона Ома I = V / R (где I — ток, V — напряжение и R — сопротивление). На рынке электротоваров имеется большое количество различных предохранителей, которые могут удовлетворить любые потребности для рассеивания мощности.
  2. Автоматические выключатели. Они используются для отключения питания, как и предохранитель, но их реакция медленнее и может не срабатывать для особо чувствительных цепей дорогостоящего оборудования.
  3. Термисторы. Термисторы отрицательных температурных коэффициентов (NTC) используются для ограничения начальных импульсных токов, которые протекают, когда устройство подключено к электросети. Термисторы имеют значительное сопротивление в холодном состоянии и низкое сопротивление при значительных температурах. NTC ограничивает пусковой ток мгновенно.
  4. Транзисторы и диоды. Регулируемые блоки питания используют схемы ограничения, такие как интегральные схемы, транзисторы и диоды. Активные схемы подходят для чувствительных сетей и срабатывают, уменьшая нагрузку или выключают питание, на повреждённую короткозамкнутую цепь или на всю сеть.
  5. Токоограничивающие диоды используются для ограничения или регулировки в широком диапазоне напряжений. Двухконтактное устройство ОТ состоит из затвора, закороченного на источник. Он поддерживает DC независимо от изменений напряжения.
Читайте также:  С помощью какого прибора измеряют работу тока какая единица работы при этом используется

Ограничитель тока нагрузки в электросетях

Ограничитель тока в электросети

Системы распределения энергии имеют автоматические выключатели для выключения питания в случае неисправности. Они имеют определённые недостатки в обеспечении необходимой надёжности, так как не всегда могут отключать минимально необходимый аварийный участок сети для ремонта. Проблема возникает при реконструкции электроснабжения путём добавления новой мощности или перекрёстных соединений, которые должны иметь свои шины и выключатели, модернизированные для более высоких пределов тока короткого замыкания (ТКЗ).

Улучшение качества электроэнергии в сетях напрямую зависит от надёжности режима работы сетевого оборудования. Среди различных типов помех, влияющих на качество напряжения в сети (скачки, искажения гармоник и т. д. ), наиболее серьёзным препятствием являются падения напряжения, так как связанные с ним скачки фазового угла могут привести к поломке оборудования, к полной остановке производства, объектов ЖКХ, что со скоростью цепной реакции создаст угрозу жизнеобеспечения населения.

Общей причиной падения напряжения является ток короткого замыкания. При возникновении неисправности в распределительной сети на всех повреждённых шинах резко падает напряжение. Уровень зависит от точки подключения и электрического расстояния шины до места аварии.

Для снижения негативных процессов и отключения неисправных участков сети применяются следующие ограничители:

Снижение нагрузки

  • Распределительный статический компенсатор;
  • рекуператор динамического напряжения;
  • конденсатор с контролируемым тиристором;
  • полупроводниковый коммутатор статического переноса;
  • твердотельный ограничитель тока неисправности.

Такие защитные устройства не всегда совершенны. Некоторые из них имеют недостаток из-за высокой стоимости, а другие могут ограничить ток повреждения менее чем в 5 раз от нормального тока, что недостаточно при перегрузках.

Точки применения токовых ограничителей в электросиловом оборудовании:

  • До места срабатывания головного выключателя на аварийном фидере нагрузок потребителей с недопустимостью перерывов в электроснабжении;
  • на оборудовании, рабочие характеристики которого перестают соответствовать предельному току короткого замыкания, возросшему в связи с аварийной ситуацией в системах электроснабжения.

Простым решением ОТ в электросетевом оборудовании является добавление сопротивления в схему. Это ограничивает скорость, с которой может увеличиваться ТКЗ до того, как выключатель разомкнут, но также ограничивает способность схемы удовлетворять быстроменяющийся потребительский спрос, поэтому добавление или удаление больших нагрузок вызывает нестабильную мощность.

Применение токозащиты в электронных схемах

Пусковой ток возникает в момент подачи выключателем напряжения. Это происходит потому, что разница эквивалентного последовательного сопротивления конденсатора и сопротивление линии составляет всего несколько милидолей и приводит к большому пусковому току. Четыре фактора, которые могут влиять на этот процесс:

Как снизить нагрузку

  1. Значение входного переменного тока.
  2. Минимальное сопротивление, требуемое термистором NTC (при t = 0).
  3. Постоянный DC.
  4. Температура окружающей среды.

Ограничитель тока представляет собой устройство или группу устройств, используемых для защиты элементов схемы от пусковой нагрузки. Термисторы и резисторы с отрицательным температурным коэффициентом (NTC) — это 2 простых варианта защиты. Их основными недостатками являются длительное время охлаждения и большая рассеиваемая мощность. Токоограничивающий диод регулирует или ограничивает ток в широком диапазоне. Они состоят из JFET с затвором, закороченным на источник и функционирующим как двухконтактный ограничитель тока.

Они позволяют проходящему через них току подниматься до определённого значения и сравниться с заданной величиной. В отличие от диодов Зенера, они сохраняют постоянный ток, а не напряжение. Токоограничивающие диоды удерживают ток, протекающий через них, неизменным при любом изменении нагрузки.

Типы токоограничивающих диодов

Существует множество различных типов токоограничивающих диодов, классифицирующихся по:

  • номинальному току регулятора;
  • максимальному предельному напряжению;
  • рабочему напряжению;
  • потребляемой мощности.

Наиболее распространёнными значениями максимального используемого напряжения являются 1, 7 В, 2, 8 В, 3, 1 В, 3, 5 В и 3, 7 В и 4, 5 В. Номинальный ток регулятора может иметь диапазон от 0,31 мА до 10 мА, причём обычно используемый ток регулятора составляет 10 мА .

Схема ограничения постоянного тока

Ограничение тока

Большинство источников питания имеют отдельные контуры регулирования DC и напряжения для регулирования своих выходов либо в режиме постоянного напряжения (CV), либо в режиме постоянного тока (CC), которые включаются в управление зависимо от того, как сопротивление нагрузки соответствует выходному напряжению и текущим настройкам.

Таким образом, защита выполняется в основном путём ограничения токового значения. При этом можно применять простую схему для ограничителя источника с использованием двух диодов и резистора. В любом источнике питания всегда существует риск того, что на выходе произойдёт короткое замыкание. Соответственно, в этих условиях необходимо защитить его от повреждений. Существует ряд схем, которые можно применить для предохранения электропитания.

Одна из простейших схем включает в себя только два диода и дополнительный резистор. Схема использует резистор для измерения помех, размещённый последовательно с выходным транзистором. Два диода, расположенные между выходом схемы и базой транзистора, обеспечивают защиту. Когда цепь работает в нормальном рабочем диапазоне, на резисторе имеется небольшое напряжение. Это напряжение плюс базовое излучательное транзистора гораздо меньше, чем падение диодного перехода, необходимого для включения двух диодов. Однако по мере увеличения DC растёт напряжение на резисторе. Когда оно равно напряжению, необходимому для работы, они включаются, напряжение транзистора падает, тем самым ограничивая ток.

Цепь этого диодного ограничителя тока для источника питания проста. Значение последовательного резистора может быть рассчитано таким образом, чтобы напряжение на нём возрастало до 0, 6 вольта (напряжение включения для кремниевого диода) при достижении максимального тока. Однако всегда лучше убедиться, что есть некоторый запас защиты, и лучше ограничить его до достижения необходимого уровня.

Ограничитель с обратной связью

Ограничитель постоянного тока

Такая же простая диодная форма ограничения тока может быть включена в цепи питания, которые используют обратную связь для определения фактического выходного напряжения и обеспечивают более точно регулируемый выход. Если точка измерения выходного напряжения принимается после последовательного токового резистора, то падение напряжения может быть исправлено на выходе.

Эта схема обеспечивает гораздо лучшее регулирование, чем регулятор прямого эмиттера, также может учитывать падение напряжения в резисторе с токовым пределом, если имеется достаточное падение напряжения на транзисторе в цепи источника питания. Выходное напряжение можно также отрегулировать, чтобы получить требуемое значение с помощью переменного резистора. Диодная форма ограничения тока может быть легко интегрирована в схему питания. Кроме того, это дешёво и удобно.

Области применения токоограничивающих диодов

Токоограничивающие диоды обеспечивают высокую производительность и простоту эксплуатации по сравнению с биполярными транзисторами в системах защиты. Они универсальны, имеют превосходную производительность в отношении динамического температурного дрейфа. Устройств, использующих диоды:

Стабилизатор тока.

  • схемы генератора сигналов;
  • схемы синхронизации;
  • зарядные устройства;
  • управления светодиодами;
  • замены удерживающих катушек в устройствах телефонной связи.

Токовые ограничивающие диоды выпускаются многими мировыми производителями полупроводников, такими как Calogic, Central Semiconductor, Diodes Inc., O. N. Semiconductor или Zetex. Рынок электроники имеет очень широкий выбор диодов, используемых диодных цепей или любых других устройств, которым может потребоваться ограничение предельного токового значения.

Фотография Андрея Алексеевича

Порошин Андрей

Источник



Простые электронные ограничители тока

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

Рисунок 1. Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

Рисунок 3. Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

Но характерно, что часть напряжения на датчике в диапазоне от 0 до 0.55 В можно считать «лишней», поскольку в этом интервале VT2 практически не «чувствует» его, а по настоящему «рабочим» для него будет только интервал 0.55 — 0.6 В. Сдвинув же нижнюю границу чувствительности усилителя, визуально составляющую 0.55 В, к нулю, можно будет решить проблему снижения значения RS.

Технически этого результата можно достичь, например, вводом в цепь между базой VT2 и правым выводом RS отдельного вспомогательного источника напряжением 0.55 В. Но удобнее сформировать его применением делителя из двух резисторов, включенных между общим проводом и эмиттером транзистора VT1 (резисторы R2, R3, Рисунок 4). И его параметры должны обеспечивать падение напряжения на R2, равное 0.55 В. Для меньшей зависимости этой величины от входного тока транзистора ток этого делителя желательно выдерживать в пределах 0.5 — 1 мА. При этих условиях уже незначительное напряжение на RS переведет транзистор VT2 в активный режим начала ограничения, а полное ограничение тока произойдет при падения напряжения на RS всего лишь немногим более 0.05 В. Понятно, что изменением этих резисторов можно будет изменять порог ограничения тока. И это будет удобнее, чем подбирать величину RS.

Рисунок 4. Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

Основные результаты испытаний, как следует из представленных графиков (Рисунок 5), сводятся к следующему. Как и ранее, ток короткого замыкания устройства составляет 0.5 А. Точнее, реально при указанных значениях резисторов R2, R3, он составил 0.48 А, но это значение было скорректировано включением последовательно с R3 дополнительного переменного резистора. Что касается максимального значения падения напряжения на датчике RS, то оно упало пропорционально уменьшению величины установленного RS и составило всего около 0.1 В. График падения напряжения на регулирующем транзисторе, по сравнению с аналогичным параметром предыдущей схемы, в общем, сохранил свои черты, хотя и несколько изменился. Так, например, следует обратить внимание на то, что в этот раз область резко нелинейного роста падения напряжения на проходном транзисторе сместилась в диапазон 0.4 — 0.5 А, а в остальной – растет практически линейно. Из этого следует, что определенный резерв по снижению падения напряжения на датчике тока RS еще есть.

Рисунок 5. Зависимость падения напряжения на RS и
проходном транзисторе VT1.

Как уже отмечалось, незначительная коррекция тока ограничения в этой конструкции была проведена изменением сопротивления R3, но когда требуется его значительное изменение, удобнее пользоваться R2. При расчете его величины целесообразно предварительно задаться величиной максимального падения напряжения VSM на датчике тока RS в режиме ограничения. В принципе, это значение может быть любым из интервала от 0 до 0.6 В. Но нужно иметь в виду, что с его уменьшением ухудшается температурная стабильность предложенного решения. Так при VSM = 0.6 В температурный коэффициент зависимости изменения предела ограничения тока в области комнатных температур не превышает значения 0.2% на градус, а при VSM = 0.1 В этот показатель возрастает уже до 1.5% . Эта величина в ряде случаев может оказаться еще приемлемой, и ее условно можно принять за нижнюю границу интервала допустимых значений VSM, верхняя же будет обусловлена максимальным падением напряжения на базе транзистора VT2 в режиме ограничения тока. Если для расчета выбрать VSM равным 0.15 В, то из этого условия при заданном токе ограничения IM, например, 1.5 А, определится величина

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

из которого следует, что

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

Источник