Меню

Какая схема усилителя не дает усиления по току

Усилитель: что мешает звучать правильно? (часть 2) (страница 3)

Следующим звеном, после входного каскада, следует линейный усилитель. Качество его работы оказывает влияние на функционирование всего устройства и при неудачном схемном решении можно всё «легко и непринужденно» испортить. Эта часть усилителя охватывается общей обратной связью и искажения, возникающие в нём, компенсируются. Вот только не стоит возлагать на последнее повышенные ожидания – единожды возникнув, искажения уже никогда не исчезнут. Существует множество схемных решений подобного узла, поэтому вынести какую-то одну общую рекомендацию затруднительно. Просто перейдем к третьей части.

Выходной каскад

Выходной каскад оканчивает усилитель, поэтому он должен обеспечивать хорошее согласование с нагрузкой. Это означает работу с большими напряжениями и токами, причем нагрузка обладает довольно большой реактивной составляющей, как по электрическим, так и по механическим характеристикам. Кроме того, геометрические размеры усилителя и тепловая мощность, рассеиваемая на радиаторах, ограничивает его максимальную мощность. Всё это накладывает весьма жесткие требования к возможным схемным решениям, а потому наиболее распространен двухтактный выходной каскад класса АВ.

Идея работы каскада заключается в разделении положительной и отрицательной полуволн на два плеча и формирование тока от положительного или отрицательного источника питания в соответствующие моменты времени. Это хорошо работает с большой амплитудой сигнала, но если уровень уменьшается, то всё более значимым становится момент перехода через нуль – именно тогда происходит переключение выходных транзисторов. Для уменьшения вносимых искажений, в усилителе устанавливается некоторый минимальный ток покоя выходного каскада, что обеспечивает одновременную работу плеч (положительной и отрицательной полуволн) для небольшого уровня сигнала.

реклама

То есть, фактически вводится небольшой режим А, отсюда и появилась эта буква в названии класса AB. Увы, делать очень уж большой ток покоя нельзя, страдает эффективность усилителя – фактически, эта мощность будет тратиться всегда, есть ли сигнал или нет. При увеличении амплитуды сигнала наступает момент, когда ток покоя исчерпывается, и могут последовать коммутационные искажения.

Для обхода этого дефекта можно задать небольшой фоновый ток через неиспользуемый транзистор, что линеаризует рабочую точку (важно для низкого уровня гармоник высокого уровня) и обеспечит рассасывание заряда (устраняет дефект коммутации для высокочастотного сигнала). Или можно пойти дальше, использовать режим ЭА – ‘экономичный А’ (Non switching , Super A). В этом случае ток транзистора неиспользуемого плеча будет плавно уменьшаться по мере увеличения выходного напряжения противоположной полярности.

Для моделирования классов AB и ЭА следующая схема:

432x304 14 KB

Подробнее можно ознакомиться с моделью и выполнить анализ можно над файлом проекта.

Посмотрим ток выходного каскада. На всех картинках верхний рисунок относится к классу AB, нижний ЭА. Данные снимались для случая:

  • AB – ток покоя уменьшался от 250 мА до 80 мА.
  • ЭА – ток покоя оставался неизменным, 150 мА, менялась агрессивность управления током неактивного плеча – от наиболее активного до полного отключения управления током транзистора.

Возьмем два случая – амплитуда сигнала 1 вольт (слева) и 10 вольт (справа):

300x337 5 KB 300x337 8 KB

При низком уровне сигнала класс AB работает в режиме A и потому не вносит каких-либо видимых искажений. У класса ЭА с этим несколько сложнее, потенциально присутствуют четные гармоники из-за очевидной несимметрии тока. Но это только «потенциально», избыточный ток протекает через транзистор противоположного канала и не попадает в нагрузку. Проще говоря, через источники питания течет ток с относительно небольшим уровнем гармоник, что не приводит к негативным последствиям.

При увеличении уровня сигнала класс AB фактически отключает неактивное плечо, а ЭА продолжает пытаться им управлять. Взглянем подробнее на место переключения:

реклама

300x337 6 KB

Фактически, в классе ЭА оба плеча одновременно формируют выходное напряжение. Теперь обратимся к спектру гармоник. В данном тесте частота сигнала будет снижена до 100 Гц, что обеспечит большее количество гармоник в слышимом диапазоне, напряжение 10 вольт.

428x337 12 KB

Для класса AB характер спектра гармоник мало зависит от величины тока покоя, а у ЭА лучшие результаты достигаются при средней степени агрессивности управления током. Скорее всего, неудачность красного и зеленого графика следует из идеологии управления током транзистора – на момент перехода транзистора из рабочего состояния в нерабочее его ток меняется довольно резко, что порождает больше гармоник, чем устраняется компенсацией управления током в противоположном плече.

В схемотехнике усилителей звуковой частоты на радиолампах применяется либо класс А, либо класс AB, который в пристальном рассмотрении оказывается классом ЭА с низким или отсутствующим током управления (фиолетовый и серый график). Если сравнить с классом AB, реализуемым в большинстве усилителей на транзисторах (и, конечно же, в интегральном исполнении), то спектр его помех интенсивнее и шире.

Выходное сопротивление усилителя

Обычный усилитель обладает крайне низким выходным сопротивлением, обусловленным эффективной работой общей отрицательной обратной связи. Как-то сложилось, что данное решение считается правильным и под него проектируют фильтры акустических систем и динамические головки. Но действительно ли это хорошо? Рассмотрим два дефекта, свойственных акустическим системам – потери и искажения в проводах, соединяющих усилитель и динамики, а также искажения в самих динамических головках при перемещении диффузора.

Довольно давно обнаружен эффект изменения сопротивления медного проводника при воздействии током разной силы и частоты, так называемый «полупроводниковый эффект». Величина изменения незначительна и никак не проявляет себя в обычных областях применения – передача электроэнергии, блоки питания, но приводит к искажениям при использовании его для передачи сильноточного звукового сигнала от усилителя к акустическим системам. Для обхода этой проблемы выпускают проводники из меди со специальной технологией изготовления, «бескислородная медь». Кроме того, соединители и разъемы тоже обладают свойством вносить искажения в передаваемый сигнал, ведь их сопротивление сочленения непостоянно во времени, хоть и мало по величине.

В тесте будут участвовать идеальные усилители с тремя типами выходного сопротивления:

  • С крайне низким выходным сопротивлением.
  • Выходное сопротивление усилителя в четыре раза больше сопротивления нагрузки.
  • Усилитель работает в режиме ‘источник тока’ и его выходное сопротивление крайне велико.

В симуляции будет использована следующая модель:

360x470 16 KB

Для эмуляции искажений в нагрузку введен нелинейный элемент из низкоомного резистора и диода Шоттки. Можно было создать искажения линейной нагрузки любым другим способом, для теста это не существенно. В данной симуляции измеряются токи через нагрузки, а не напряжения. Это вызвано тем, что именно ток через катушку вызывает перемещение диффузора обычной динамической головки (и что совершенно не так для электростатических излучающих элементов).

Хотелось бы остановиться на цветной идентификации графиков:

  • Зеленый – контрольный, идеальный случай. Во всех остальных вариантах в нагрузку внесен нелинейный элемент.
  • Красный – обычный усилитель с крайне низким выходным сопротивлением.
  • Черный – усилитель с выходным сопротивлением в четыре раза больше, чем сопротивление нагрузки.
  • Синий – выходное сопротивление очень большое, усилитель работает в режиме источника тока.

Нет смысла приводить полученный сигнал, все осциллограммы практически совпадают. Гораздо интереснее посмотреть на спектр:

реклама

426x337 5 KB

Вы видите здесь зеленый график? Я – нет, его полностью закрыл синий (режим источника тока). Это означает, что увеличение выходного сопротивления усилителя уменьшает вред от нелинейных элементов, которые присутствуют в соединительных элементах между усилителем и динамической головкой.

Теперь перейдем к другой проблеме – изменение индуктивности обмотки катушки динамика при перемещении в поле магнитного зазора. В тесте будут участвовать всё те же три усилителя, а эмуляцию нелинейной индуктивности выполним на дросселе с материалом 4C6. Схема выглядит следующим образом:

364x473 19 KB

Соображения по данной схеме полностью изложены в предыдущем тесте и специальных комментариев не требуется. Посмотрим на спектр:

реклама

426x337 7 KB

Налицо явные интермодуляционные искажения. Как и в предыдущем тесте, по мере увеличения выходного сопротивления усилителя уменьшаются негативные последствия изменения свойств дросселя (то есть индуктивности катушки динамика).

Существует еще один нюанс, связанный с выходным сопротивлением усилителя – импеданс акустической системы непостоянен в рабочей полосе частот. В области низких частот вносятся резонансные эффекты от собственной механической системы динамика и фазоинвертора, для средних частот – разделительный фильтр оказывает влияние в областях раздела рабочих полос динамиков.

Кроме того, зачастую акустические системы проектируются под усилитель с низким выходным сопротивлением, а потому никто не заботится о сохранении постоянного импеданса акустической системы. Если одна из головок с повышенной чувствительностью, то последовательно с ней устанавливают дополнительный постоянный резистор, что увеличивает импеданс колонки в области рабочих частот этого динамика. Если такую колонку подключить к усилителю с повышенным выходным сопротивлением, то характер звучания станет другим.

Читайте также:  Прогрев бетона сварочным аппаратом постоянного тока

Впрочем, тщательной отстройкой элементов фильтра это дефект можно устранить или в значительной степени уменьшить, но вот резонансные явления в низкочастотной части компенсировать нельзя. Поправка – можно, но крайне неприятно – придется ставить высокодобротный и тщательно настроенный LC контур параллельно низкочастотной динамической головке.

реклама

Естественно, в серийных конструкциях никто такого делать не будет, да и в любительской аппаратуре встречается крайне редко, поэтому подключение колонки к усилителю с высоким выходным сопротивлением неизбежно приведет к изменению характера звучания басов – возрастет уровень сигнала с частотой механического резонанса и увеличится время призвука. Этот эффект можно частично уменьшить акустическим демпфированием – помещением материала с пониженной акустической прозрачностью и вязкостью в окна с обратной стороны динамика.

От себя хочу добавить, что такой прием не слишком хорош, и у него есть возможные неприятные последствия, поэтому лучше менять тип выходного сопротивления усилителя в зависимости от частоты сигнала, чем «издеваться» над динамическими головками. В этом вопросе важно то, что переход на усилитель с токовым выходом меняет характер звучания и кому-то это может нравиться или не нравиться, но у него нет ничего общего с устранением искажений в акустической системе, озвученных в последних двух тестах.

Итак, речь идет о радиолампах, так при чем здесь выходное сопротивление? Увы, прямо следует из технологии. В усилителе выходное сопротивление достаточно велико и маленьким его делает общая обратная связь. Чем она мощнее, чем больший запас петлевого усиления, тем лучше компенсируются все искажения в усилителе… в том числе и выходное сопротивление. В усилителях на радиолампах глубина обратной связи мала, да и сами регулирующие элементы обладают значительным внутренним сопротивлением (радиолампы вообще, по своей природе, являются скорее источниками тока, чем сопротивлениями).

Как следствие, ламповые усилители обладают отнюдь не низким выходным сопротивлением, а потому – смотрите раздел – в некоторой степени компенсируют негативные элементы в акустической системе и соединении с усилителем. Что мешает такое же реализовать в «транзисторном» исполнении.

Выводы

реклама

Знаете, эта история с развитием схемотехники очень напоминает эволюцию советского общественного транспорта. В «застойные» времена автобусы благодаря слабым моторам медленнее набирали скорость, на дорогу у меня уходило 25-40 минут. В постперестроечный период парк автомобилей сменился, повысилась мощность мотора и эффективность тормозной системы. Как следствие, на дорогу стало уходить от получаса до нескольких часов, но речь не о том. Увеличение мощности двигателя привело к тому, что отчаянно ощущаешь себя «дровами».

Понимание того, что водители этого вида транспорта являются профессионалами своего дела, плохо скрашивают ощущения старт-стопного режима в пробке. Быстрый разгон и малое время торможения – отличный способ двигаться в потоке, вот только о дровах забыли? Более мощная динамика автобуса позволяет быстрее доставить до места, но кому нужна экономия пяти процентов времени такой ценой?

Со схемотехникой усилителей схожая беда. Да, транзисторы эффективнее и лучше радиоламп. При конструировании аппаратуры можно получить сверхнизкий уровень гармоник и других характеристик усилителя (выходное сопротивление, скорость нарастания выходного сигнала, максимальная частота и прочие), но с какими последствиями? Дело не в количестве компонентов, SOT-23 или интегральные решения занимают мизерное место, по сравнению с одной единственной радиолампой. Проблема кроется в подходе – в борьбе за «красивые цифры» часто забывают о главном — качестве звучания.

Довольно показательно отношение разных фирм к схемотехнике усилителей – японские модели обладают лучшими техническими характеристиками, чем европейские разработки, но звучат хуже. Данное мнение было высказано авторитетным источником, но довольно давно, поэтому ссылки привести не могу. Впрочем, я с ним согласен, мои аргументы изложены в этой статье. Радиолампы – атавизм, которому пора уходить. Просто надо использовать нормальные схемные решения, учитывать всё нюансы и проблемы, а не гнаться за красивыми цифрами. Согласны вы с этим или нет, выбор за вами. Пожалуйста, сделайте его осмысленно.

Источник

Как работает усилитель на транзисторе

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Читайте также:  Ремонт защиту по току

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Источник

Усилители напряжения, тока и мощности. Расчет параметров усилителей.

Часть I. Усилитель напряжения. Схема усилителя низкой частоты на биполярном транзисторе.

Усилительный каскад на биполярном транзисторе, включенном по схеме с ОЭ, является одним из наиболее распространенных асимметричных усилителей. Принципиальная схема такого каскада, выполненная на дискретных элементах, изображена на рисунке ниже.

В этой схеме резистор , включенный в главную цепь транзистора, служит для ограничения коллекторного тока, а также для обеспечения необходимого коэффициента усиления. При помощи делителя напряжения R1R2 задается начальное напряжение смещения на базе транзистора VT, необходимое для режима усиления класса А.

Цепь RэСэ выполняет функцию эмиттерной термостабилизации точки покоя; конденсаторы С1 и С2 являются разделительными для постоянной и переменной составляющих тока. Конденсатор Сэ шунтирует резистор по переменному току, так как емкость Сэ значительна.

При подаче на вход усилителя напряжения сигнала неизменной амплитуды при различных частотах выходное напряжение в зависимости от частоты сигнала будет изменяться, так как сопротивление конденсаторов C1, C2 на разных частотах различно.

Зависимость коэффициента усиления от частоты сигнала получило название амплитудно-частотной характеристики усилителя (АЧХ).

Усилители низкой частоты наиболее широко применяются для усиления сигналов, несущих звуковую информацию, в этих случаях они называются, также, усилителями звуковой частоты, кроме этого УНЧ используются для усиления информационного сигнала в различных сферах: измерительной технике и дефектоскопии; автоматике, телемеханике и аналоговой вычислительной технике; в других отраслях электроники. Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ).

Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство.

Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы (колонки), наушники (головные телефоны); радиотрансляционная сеть или модулятор радиопередатчика. Усилитель низких частот является неотъемлемой частью всей звуковоспроизводящей, звукозаписывающей и радиотранслирующей аппаратуры.

Анализ работы каскада усилителя производят с помощью эквивалентной схемы (на рис. ниже), в которой транзистор заменен Т-образной схемой замещения.

В этой эквивалентной схеме все физические процессы, происходящие в транзисторе, учитываются при помощи малосигнальных Н-параметров транзистора, которые приведены ниже.

Для питания усилителей используются источники напряжения с малым внутренним сопротивлением, поэтому можно считать, что по отношению к входному сигналу резисторы R1 и R2 включены параллельно и их можно заменить одним эквивалентным Rб = R1R2/(R1+R2).

Важным критерием для выбора номиналов резисторов Rэ, R1 и R2 является обеспечение температурной стабильности статического режима работы транзистора. Значительная зависимость параметров транзистора от температуры приводит к неуправляемому изменению коллекторного тока , вследствие чего могут возникнуть нелинейные искажения усиливаемых сигналов. Для достижения наилучшей температурной стабилизации режима надо увеличивать сопротивление . Однако это приводит к необходимости повышать напряжение питания Е и увеличивает потребляемую от него мощность. При уменьшении сопротивлений резисторов R1 и R2 также возрастает потребляемая мощность, снижающая экономичность схемы и уменьшается входное сопротивление усилительного каскада.

Часть II. Усилитель постоянного тока в интегральном исполнении.

Операционный усилитель (ОУ) в интегральном исполнении является наиболее распространенной универсальной микросхемой (ИМС). ОУ – это устройство с высокостабильными качественными показателями, которые позволяют производить обработку аналоговых сигналов по алгоритму, задаваемому с помощью внешних цепей.

  • коэффициент усиления по напряжению стремится к бесконечности;
  • входное сопротивление стремится к бесконечности;
  • выходное сопротивление стремится к нулю;
  • если входное напряжение равно нулю, то выходное напряжение также равно нулю Uвх = 0, Uвых = 0;
  • бесконечная полоса усиливаемых частот.
Читайте также:  Что такое ток потребления стабилизатора

Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловливающих наличие дрейфа нуля в УПТ. К ним относятся нестабильности источников питания, температурная и временная нестабильности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наибольшую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и нестабильность тока коллектора усилителя в режиме покоя изменениями Iкбо, Uбэо. Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо уменьшать коэффициент нестабильности Sнс. Абсолютным дрейфом нуля Uвых, называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведен­ного ко входу усилителя:

едр=Uвых / Ku

Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и эквивалентен ложному входному сигналу.

Способы уменьшения дрейфа нуля:

  • Термостатирование. Схема помещается в термостат, где поддерживается постоянная температура.
  • Температурная компенсация. Применяются все способы температурной компенсации нестабильности рабочего режима.
  • Использование ООС.
  • Применение специальных параллельно-балансных каскадов, имеющих малый дрейф нуля.

Усилители постоянного тока предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой в виде, изображённой на рисунке слева. Поскольку коэффициент усиления ОУ очень велик, то использование его в качестве усилителя возможно лишь при охвате его глубокой отрицательной обратной связью (при отсутствии ООС даже крайне малый сигнал «шума» на входе ОУ даст на выходе ОУ напряжение, близкое к напряжению насыщения).

Часть III. Усилители мощности .

  • Входной каскад
  • Промежуточный каскад
  • Выходной каскад (усилитель мощности)

1. Трансформаторные усилители мощности.

Рассмотрим однотактный трансформаторный УМ, в кото­ром транзистор включен по схеме с ОЭ (рис. слева).

Трансформаторы ТР1, и ТР2 предназначены для согласования нагрузки и выходного сопротивления усилителя и входного сопротивления усилителя с сопротивлением ис­точника входного сигнала соответственно. Элементы R и D обеспечивают начальный режим работы транзистора, а С увеличивает переменную составляющую, поступающую на транзистор Т.

Поскольку трансформатор является нежелательным элементом усилителей мощности, т.к. имеет большие габариты и вес, относительно сложен в изготовлении, то в настоящее время наибольшее распространение получили бестрансформаторные усилители мощности.

2. Бестрансформаторные усилители мощности.

Рассмотрим двухтактный УМ на биполярных транзисторах с различным типом проводимости. Как уже отмечалось выше, необходимо увеличить мощность выходного сигнала без изменения его формы. Для этого берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала, как показано на рисунке ниже:

Если транзисторы обладают достаточно высоким значением крутизны, то возможно построение схем, работающих на нагрузку величиной единицы Ом без использования трансформаторов. Питается такой усилитель от двухполярного источника питания с заземленной средней точкой, хотя возможно построение схем и для однополярного питания.

Принципиальная схема комплементарного эмиттерного повторителя — усилителя с дополнительной симметрией — приведена на рисунке слева. При одинаковом входном сигнале через транзистор n-p-n-типа протекает ток во время положительных полупериодов. Когда же входное напряжение отрицательно, ток будет течь через транзистор p-n- p -типа. Объединяя эмиттеры обоих транзисторов, нагружая их общей нагрузкой и подавая один и тот же сигнал на объединенные базы, получаем двухтактный каскад усиления мощности.

Рассмотрим более подробно включение и работу транзисторов. Транзисторы усилителя работают в режиме класса В. В данной схеме транзисторы должны быть абсолютно одинаковы по своим параметрам, но противоположны по планарной структуре. При поступлении на вход усилителя положительной полуволны напряжения Uвх транзистор Т1, работает в режиме усиления, а транзис­тор Т2 — в режиме отсечки. При поступлении отрицатель­ной полуволны транзисторы меняются ролями. Так как напряжение между базой и эмиттером открытого транзи­стора мало (около 0,7 В), напряжение Uвых близко к напря­жению Uвх. Однако выходное напряжение оказывается искаженным из-за влияния нелинейностей входных ха­рактеристик транзисторов. Проблема нелинейных искажений решается подачей начального смещения на базовые цепи, переводящей каскад в режим АВ.

Для рассматриваемого усили­теля максимально возможная амплитуда напряжения на нагрузке Um равна E . Поэтому максимально возможная мощность нагрузки определяется выражением

Можно показать, что при максимальной мощности нагрузки усилитель потребляет от источников питания мощность, определяемую выражением

Исходя из вышесказанного, получаем максимально возможный коэффици­ент полезного действия УМ: nmax = P н.max / P потр.max = 0,78.

Источник



Сравнение схем усилителей по параметрам

В схемах усилителя может быть использовано включение транзистора как по схеме с общим эмиттером (ОЭ), так и по схеме с общей базой (ОБ) и общим коллектором (ОК). Перечисленные схемы изображены на рисунках 11, 12 и 13 соответственно.

Сравним эти схемы по основным параметрам усилителей: коэффициенту усиления по току КI, напряжению КU, мощности КP , входному и выходному сопротивлениям, (последнее важно при построении многокаскадных схем при их согласовании).

В схеме усилителя с ОБ (рисунок 12) постоянное напряжение смещения на базу подается делителем на сопротивлениях R1 и R2, а конденсатор СБ заземляет базу по переменному току. Сопротивление RЭ создает путь постоянному току в цепи эмиттера.

Рисунок 12 Схема усилителя с ОБ.

В схеме усилителя с ОК (рисунок 13) конденсатор СК заземляет коллектор по переменному току. Сопротивление RH является общим для входной и выходной цепей, поэтому в схеме создается отрицательная обратная связь по напряжению.

Рисунок 13 Схема усилителя с ОК

Коэффициент усиления по току КI = IВЫХ /I ВХ

где rВХ — сопротивление перехода эмиттер-база транзистора переменному току и составляет 10…100 Ом.

Сопротивление резистора в коллекторной цепи R Н имеет порядок десятков кОм, поэтому КU в схеме составляет 10…100.

Коэффициент усиления по мощности КР = КU КI

Входное сопротивление RВХ= U ВХ / I ВХ

Выходное сопротивление RВЫХ = UВЫХ / IВЫХ

Фаза выходного сигнала в схеме с ОБ совпадает с фазой входного, так как при увеличении положительного напряжения на эмиттере, ток эмиттера уменьшается, а, следовательно, уменьшается ток коллектора и увеличивается напряжение на коллекторе.

Коэффициент усиления по току КI = IВЫХ /I ВХ

β – коэффициент передачи тока базы в схеме с ОЭ.

Входное сопротивление RВХ= U ВХ / I ВХ

Коэффициент усиления по напряжению КU == UВЫХ /U ВХ

имеет примерно такое же значение, как в схеме с ОБ.

Коэффициент усиления по мощности КР = КU КI

Выходное сопротивление RВЫХ = UВЫХ / IВЫХ

Выходной сигнал в схеме с ОЭ находится в противофазе со входным сигналом (см. рисунок 8).

Коэффициент усиления по току КI = IВЫХ /I ВХ

КI =I Э / I Б = 1 /(1- α) = (1+ β) =γ >> 1, γ- коэффициент передачи тока базы в схеме с ОК, несколько больший, чем в схеме с ОЭ.

Коэффициент усиления по напряжению КU == UВЫХ /U ВХ

-самое большое усиление по мощности обеспечивает схема с ОЭ;

-схема с ОБ имеет очень малое входное сопротивление, что затрудняет ее использование в многокаскадных схемах;

-схема с ОК имеет самое большое входное сопротивление и самое малое выходное, поэтому эту схему используют как трансформатор сопротивлений для согласования в многокаскадных усилителях и при работе на низкоомную нагрузку;

-схема с ОЭ имеет малую разницу между входным и выходным сопротивлением, что облегчает согласование усилительных каскадов между собой.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник