Меню

Какая связь существует между электрическим током магнитным полем

Какая связь существует между электрическим током и магнитным полем?

Данную связь используют для получения электроэнергии в промышленных целях. Переменное магнитное поле наводит эдс в проводнике, помещённом в него и вокруг проводника с током существует магнитное поле. Эти свойства используются повсеместно.

Связь самая что ни наесть прямая. Есть ток в проводнике, значит он вызывает магнитное поле. Если есть движущееся магнитное поле, то в проводнике попавшем в это магнитное поле возникает электрический ток.

Ответ Б — телевизор.

Телевизор появился только после того, как изобрели и сделали электронно-лучевую трубку. Картинка рисуется при помощи электронно-лучевого луча — потока электронов, по сути — при помощи электричества.

Утюги работали на углях задолго до изобретения электричества.

Швейные машинки были с ручным или ножным механическими приводами.

Настольные лампы использовали керосиновые.

Мясорубку крутили вручную.

Это автоматический предохранитель в стандарте для электрического разъема (патрона) Е27.

У него две кнопки! Одна большая кнопка, для включения. Маленькая кнопочка (ближе к краю) — для отключения. Если в сети будет перегрузка, этот предохранитель сработает и утопленная (нажатая) большая кнопка «выскочит» наружу, тем самым показывая, что произошло срабатывание в связи с перегрузкой. После устранения перегрузки (отключения от сети неисправного устройства), нажимаете на эту большую кнопку и, ура, у вас снова есть свет.

Маленькая кнопочка нужна для принудительного отключения. Например, вам нужно отремонтировать розетку. Или, вы уходите из дома, а у вас остается ребенок в таком небольшом возрасте, что желательно отключить электричество. Или, вы уезжаете надолго и вам не нужно электричество в квартире. Вот, чтобы «не выкручивать пробку», просто жмете на маленькую кнопочку.

В 1746 году французский священник и физик Жан-Антуан Нолле попробовал экспериментально измерить скорость тока . Амперметров и вольтметров тогда еще не изобрели, а прохождение тока люди фиксировали по своим собственным ощущениям. Для проведения эксперимента, Жан-Антуан Нолле построил 200 монахов по кругу на расстоянии полутора километров, соединив их металлическими проводами и запустил разряд из лейденской банки. Все монахи реагировали одновременно, из чего было заключено, что скорость тока очень велика.

Из-за огромных потерь при такой передаче. И дело даже не в скин-эффекте.

Провод ЛЭП — это антенна. А антенна обладает удивительной способностью излучать электромагнитную энергию в окружающее пространство. И если на частоте в 50 или 60 герц это излучение невелико, то на частотах в сотни килогерц оно уже перестаёт быть незаметным. 400 или 500 кГц — это средние волны. Антенное поле передатчиков СВ-радиостанций — это всего-то десятки метров. И при этом излучаемая мощность может составлять десятки и сотни киловатт. Можете себе представить, сколько мощности будет излучать «антенна» длиной в сотни километров, и сколько в таком случае дойдёт до потребителя.

Что ж повторю свой комментарий. Айфон, впрочем, как и любой другой прибор. который требует подзарядки, опасен в первую очередь тем, что потребляет электрический ток, во время восполнения потерь питания. Поэтому не стоит брать его с собой в ванную комнату, когда решаете принять ванну. Как минимум, можете лишиться айфона, как максимум: жизни. Что и случилось с девушкой, у которой айфон упал в наполненную водой ванну, но упал крайне неудачно, вместе с зарядным устройством.

Но это частный и совершенно уникальный случай. Пожалуй самую большую опасность в айфоне представляет из себя интернет-зависимость. А также, как вариация данной зависимости, её подвид: игровая зависимость. Почему именно айфон? Да потому, что данное устройство мобильно. И позволяет без контрольно, особенно детям, общаться до умопомрачения в социальных сетях и играть в игры.

Я не призываю отбирать у детей гаджеты. Но иногда родителям стоит более внимательно отнестись к тому, чем занимается ваш ребенок.

Источник

Какая связь существует между электрическим током магнитным полем

Назад в «Оглавление» — смотреть

1. Какие явления наблюдаются в цепи, в которой существует электрический ток?

В цепи, в которой существует электрический ток, наблюдается возникновение магнитного поля.

2. Какие магнитные явления вам известны?

— притягивание металлических предметов к постоянному магниту,
— отклонение магнитной стрелки около проводника с током,
— притягивание или отталкивание двух проводников с током.

3. В чём состоит опыт Эрстеда?

Опыт Эрстеда демонстрирует взаимодействие проводника с током и магнитной стрелки.
Это взаимодействие обнаружил в 1820 г. датский ученый Эрстед.
Проводник, включенный в цепь источника тока, располагается над магнитной стрелкой параллельно ее оси.
При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения.
При размыкании цепи магнитная стрелка возвращается в свое начальное положение.
Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.

4. Какая связь существует между электрическим током и магнитным полем?

Магнитное поле существует вокруг любого проводника с током, г. е. вокруг движущихся электрических зарядов.
Электрический ток и магнитное поле неотделимы друг от друга.
Вокруг неподвижных электрических зарядов существует только электрическое поле.
Вокруг движущихся зарядов, т. е. электрического тока, существует и электрическое, и магнитное поле.
Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля.

Источник

Электрические и магнитные поля

Статья со всеми формулами через редактор в разделе рецензии

В электромагнитном взаимодействии участвуют заряды, представленные электронами и протонами. Переносчиками силового взаимодействия являются эфирные частицы фотоники. Электромагнитное взаимодействие происходит либо между неподвижными зарядами – это мы называем электрическое поле, либо между движущимися зарядами (проводники с электрическим током) – это мы называем магнитное поле.
То, что мы можем наблюдать и регистрировать – это лишь следствие, а причины этих процессов находятся в микромире. Попробуем проникнуть в микромир и разобраться в причинах возникновения электрических и магнитных полей.
Сначала вот о чём.
Вы никогда не задумывались над тем, что формула Ньютона F = Gm1m2/R^2 и формула Кулона F = k1q1q2/R^2 похожи друг на друга?
В чём эти формулы одинаковы?
В том, что они математически описывают один и тот же физический процесс. А именно, действие эфира на объекты, объясняемое взаимозатенённостью их друг относительно друга. Кроме того, обе формулы носят приблизительный характер – они не учитывают размеры взаимодействующих объектов.
Чем же эти формулы отличаются друг от друга?
Они отличаются друг от друга объектами. В первом случае объекты – это массы тел, во втором – это заряды. Тогда, аналогично, гравитационному взаимодействию, можно дать определение и электромагнитному взаимодействию между неподвижными зарядами.
Электромагнитное взаимодействие между неподвижными зарядами – это результат действия эфира, связанный с взаимозатенённостью между неподвижными зарядами.
Теперь о переносчиках взаимодействия – фотониках. То, что фотоники и нейтриники выполняют разные функции, предполагает следующее. Фотоники ответственны за электромагнитное взаимодействие, а нейтриники ответственны за гравитационное взаимодействие и частные случаи его близкодействия (сильное, слабое и молекулярное взаимодействия). И те, и другие являются составляющими эфира, но выполняющие разные функции. Теперь рассмотрим, с чем и как будут взаимодействовать фотоники? Вся материя состоит из частиц: протонов, электронов, фотонов, нейтрино, фотоников и нейтриников.
Электрон – это частица, состоящая 10 в 30 степени фотоников.
Основная часть фотоников выполняют функцию заряда. Небольшая часть фотоников выполняет функцию обменных частиц, которые электрон в виде фотонов то излучает, то поглощает.
Протон состоит из двух частиц: позитрона и “протона без позитрона”. Позитрон обращается вокруг “протона без позитрона”. Позитрон аналогичен электрону по всем параметрам, кроме знака заряда.
Фотон представим как частицу, состоящую из фотоников, расположенных определённым образом в пространстве. Фотон движется в пространстве как единое целое прямолинейно со скоростью света и излучает с каждым колебанием частицу – фотоник. Фотоник – мельчайшая частица материи. Продукт распада фотона. Фотоник до контакта с зарядом нейтральная частица. Она движется прямолинейно со скоростью света. Вещество прозрачно для фотоника, кроме сечения взаимодействия заряда. После контакта с зарядом фотоник становится переносчиком силового взаимодействия, о чём будет рассказано далее.
Электрическое поле образуется только между неподвижными зарядами. Взаимозатенённость между зарядами является каналом взаимодействия и одновременно электрическим полем.
Электрическое поле – это потоки переизлученных фотоников между неподвижными зарядами. Интенсивность потоков, переизлученных фотоников, зависит от величины зарядов.
Как образуется электрическое поле между неподвижными зарядами?
Если есть взаимозатенённость с другими неподвижными зарядами, тогда происходит следующее. Фотоники, двигаясь со всех направлений к заряду, достигают его, а затем после контакта с ним переизлучаются в сторону тени от другого заряда. При этом заряд передаёт им момент количества движения (спин) с направлением вращения согласно знаку заряда. Эти потоки мы воспринимаем, как силовые линии электрического поля. При взаимодействии потоков, переизлученных фотоников от зарядов с разными знаками, будет возникать сила притяжения, а от зарядов с одинаковым знаком, будет возникать сила отталкивания.
Таким способом передаётся силовое взаимодействие на расстояние между зарядами.
Между собой переизлученные зарядами фотоники взаимодействовать не могут, так как при встречном направлении движения они не сталкиваются. Расстояния между фотониками очень большие в сравнении с их размерами. Они аналогичны расстояниям между звёзд.
Силовые линии между двумя неподвижными зарядами любых знаков, как следует из закона Кулона, – это прямые линии.
Непереизлученные зарядом фотоники поглощаются им.
Если эти процессы происходят в межзвёздном или внегалактическом пространстве, то набрав необходимое количество фотоников, заряд (электрон) излучает их в виде фотонов минимального фонового излучения (“3К” излучение).
Таким образом, если между неподвижными зарядами существует взаимозатенённость, то между ними существует электрическое поле.
Если заряд один q1, а q2 = 0, то электрическое поле в пространстве вокруг заряда q1 отсутствует.
Это следует из закона Кулона F = k1q1q2/R^2,
где: q1 и q2 – точечные заряды.
В ”современной“ физике пользуются термином напряжённость электрического поля. Откуда взялся этот термин? Из формулы Кулона при условии, что q2 = 1 единичный заряд. Получается математическое выражение E = F/q2 = k1q1/R^2. Если Вы уберёте второй единичный заряд q2 = 0, то электрическое поле исчезнет. Не будет второго заряда q2 = 0, не будет ни силы взаимодействия, ни напряжённости, которая вычисляется через силу взаимодействия формулы Кулона.
Таким образом, напряжённость — это глупое математическое выражение, не более.
На самом деле мы всегда измеряем силу взаимодействия между q1 и q2, а не напряжённость. Получается, что электрическое поле – это поле заряженного конденсатора.
Эл. ток может возникнуть, если два заряда разной величины соединить проводником. Если между зарядами есть электрическое поле, то оно гонит электроны в проводнике. Уберите один заряд. И где эл. ток? Нет. Это является доказательством, что один заряд не имеет электрического поля.
Если заряд один, то конденсатора нет, соответственно, нет и электрического поля. Поэтому теорема Гаусса и понятие напряжённости электрического поля не имеет физического смысла. Физический смысл имеет только экспериментально подтверждённое взаимодействие по формуле Кулона.
Электрическое поле – это поле заряженного конденсатора. Нет второго заряда, нет и электрического поля.
Когда заряд один, то вторая обкладка конденсатора отсутствует. Конденсатора, как такового, нет. Ёмкость равна нулю.
Вот про ёмкость в системе СИ:
”Фарада, единица электрической ёмкости. Фарада – ёмкость конденсатора (заметьте не заряда, а конденсатора), на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В“.
То есть электрическое поле может быть только между зарядами.
Если два разноимённых заряда соединить проводником, то по проводнику потечёт эл. ток. Потоки, переизлученных фотоников от отрицательного заряда, будут отталкивать электроны к противоположному заряду, а потоки, переизлученных фотоников от положительного заряда, будут притягивать электроны к положительному заряду. Таким образом, эл. ток – это перемещение зарядов между двумя зарядами.
Нет двух зарядов – нет и эл. тока между ними и, соответственно, нет электрического поля.
Проследим, откуда и как появляются цепочки ошибок в физике.
Например, вводят ошибочный термин – электрический потенциал, который физического смысла не имеет. Разве Вы можете его наблюдать или измерить? Нет. Для его измерения даже прибора не существует. Есть только прибор вольтметр, у которого два измерительных провода и он измеряет только разность потенциалов. Таким образом, чтобы процесс измерения состоялся, необходимо минимум два объекта измерения — два заряда. Ведь нельзя измерить то, чего в природе нет. Разность потенциалов – напряжение, тоже обман. На самом деле это разность зарядов.
Об этом на стр. 62.
Куда ведёт эта ошибка?
Во-первых, она ведёт к ошибочному определению ёмкости. Одиночный заряд q не имеет ёмкости C = q/;. Потенциал ; ничем не измерить, так как в вольтметр измеряет только разность потенциалов (напряжение).
Эта формула ошибочна.
Ёмкость может быть только у конденсатора C = Q/U,
где — Q заряд на обкладках конденсатора,
U — напряжение между обкладками конденсатора.
Во-вторых, она ведёт к ошибочному понятию напряжённости электрического поля. Данное понятие и сам термин ведёт только к путанице и к следующим ошибкам.
Следующей серьёзной ошибкой является теорема Гаусса, утверждающая, что вокруг одиночного заряда существует электрическое поле.
Однако это утверждение ничем не подтверждается, кроме невежественного доказательства теоремы. А доказательства этой ”теоремы“ сводятся всего лишь к рассуждениям, что при перемещении заряда внутри сферы поток вектора напряжённости не изменяется.
А где эксперимент?
А эксперимент не провести, так как вольтметр пустоту вокруг одиночного заряда измерить не может. Вольтметр измеряет только разность потенциалов (напряжение, точнее разность зарядов), а не напряжённость.
Конечной целью данной цепочки ошибок является математическая теория электромагнитного поля Максвелла.
Данная математическая теория основана на четырёх фальшивых уравнениях, одно из которых Максвелл назвал теорема Гаусса.
Аналогична ситуация и с ”теоремой“ Био-Савара-Лапласа.
В тех случаях, когда электрическое поле создается несколькими зарядами, применяется принцип суперпозиции.
Магнитное поле возникает, когда имеются два проводника с эл. током (или виток проводника) или два проводника, вращающихся друг относительно друга, и в одном из них течёт эл. ток. В роли проводника с эл. током может выступать постоянный магнит.
Магнитное поле – это потоки переизлученных фотоников между движущимися зарядами (между проводниками с эл. током).
Взаимозатенённость между проводниками с эл. током является каналом взаимодействия и одновременно магнитным полем. Интенсивность потоков, переизлученных фотоников, зависит от величин эл. токов i1 и i2.
Как образуется магнитное поле вокруг проводников с эл. током или движущихся зарядов?
Если есть взаимозатенённость от других движущихся зарядов, тогда происходит следующее. На движущийся заряд со всех сторон налетают фотоники. После контакта фотоники переизлучаются и движутся упорядоченно вокруг проводника, которое мы воспринимаем, как силовые линии и называем магнитным полем. При этом движущийся заряд передаёт фотоникам момент количества движения относительно оси проводника. Таким способом передаётся силовое взаимодействие на расстояние между проводниками с эл. током.
Таким образом, если между проводниками с эл. током существует взаимозатенённость, значит, существует магнитное поле. Если прямой проводник с эл. током один i1, а i2=0, то магнитное поле отсутствует.
Это следует из закона Ампера F = k2i1i2L/R.
Если у нас два прямых проводника с эл. током, то вокруг каждого возникают потоки переизлученных фотоников, которые взаимодействуют с движущимися зарядами (виток из одного проводника заменяет два прямых проводника).
Когда направление токов в проводниках совпадают, то возникает сила притяжения. Если направление токов разное, то возникает сила отталкивания.
Может возникнуть вопрос. Почему нет магнитного поля вокруг прямого проводника с эл. током, когда он один? Ведь движущихся зарядов в нём много. Ответ следующий. Движущиеся заряды электроны в прямом проводнике находятся в состоянии покоя друг относительно друга, а магнитные поля могут возникнуть, когда заряды движутся друг относительно друга. Раз заряды покоятся друг относительно друга, тогда между зарядами электронами должны существовать электрические поля. В данном случае между электронами будут существовать электрические поля. При этом электроны будут отталкиваться друг от друга, и будут располагаться по всей поверхности проводника. Это служит подтверждением данного объяснения. А для возникновения магнитного поля нужен второй прямой проводник с эл. током или хотя бы один виток проводника с эл. током.
В ”современной“ физике пользуются ещё термином индукция магнитного поля.
Откуда взялся этот термин?
Вот откуда. Из формулы Ампера.
Если взять проводник длиной L равной единице длины с протекающим в нём эл. током i2 равным единице силы тока и назвать его пробным, тогда появляется математическое выражение магнитная индукция B = F/i2L = k2i1/R.
Это глупое математическое действие, не более. Физического смысла оно не имеет.
Уберите второй проводник с током i2=0 и взаимодействие исчезнет.
Исчезнет и индукция. И никакой силы Вы экспериментально измерить не сможете, так как Вы всегда измеряете не индукцию, а силу взаимодействия между i1 и i2.
Можете называть i2 единичным или пробным, или i2 прибора, но суть от этого не изменится, так как Вы всегда измеряете не индукцию, а силу взаимодействия между i1 и i2.
Про коэффициенты k1 и k2 рассказано в следующем разделе.
Если электрическое поле возникает при приближении к заряду пробного заряда, то магнитное поле возникает при приближении к проводнику с эл. током другого проводника с эл. током или магнита.
Магнитное поле представляет собой индуктивность с эл. током. Если проводник с эл. током прямой и один, то индуктивности нет, тогда нет и магнитного поля.
Вот про индуктивность в системе СИ:
”Генри, единица индуктивности. Генри равен индуктивности контура (заметьте, контура, а не прямого проводника), в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с“.
Магнитное поле возникает лишь тогда, когда появляется эфирная тень от других движущихся зарядов, поэтому теорема Био-Савара-Лапласа также не имеет физического смысла.
Физический смысл имеет только экспериментально подтверждённое взаимодействие в формуле Ампера. Вообще слово взаимодействие подсказывает, что взаимодействие может происходить только между, как минимум двумя компонентами взаимодействия.
Если постоянный эл. ток заменить на переменный, то для генерации эл. тока во вторичной катушке индуктивности нет необходимости в их взаимном вращении. Во вторичной обмотке возникнет эл. ток противоположного направления. Такое устройство является трансформатором.
При контактном способе обнаружения магнитного поля любой прибор является вторым проводником с эл. током. Наличие магнитного поля иногда можно подтвердить бесконтактным способом. С помощью эффекта Зеемана.
Почему магнитное поле не действует на неподвижные заряды и почему магнитное поле не взаимодействует с электрическим полем?
Взаимозатенённость, а вместе с ней и канал взаимодействия может быть только либо между неподвижными зарядами, либо между движущимися зарядами.
Природа их взаимодействия (перенос силового взаимодействия) разная.
Если неподвижный заряд начал двигаться, то взаимозатенённость, а вместе с ней и каналы взаимодействия с другими неподвижными зарядами пропадут. И наоборот, если один из движущихся зарядов остановился, то взаимозатенённость с другими движущимися зарядами пропадёт.
Таким образом, переизлученных фотоников получается две пары:
переизлученные фотоники от неподвижного положительного заряда (электрическое поле);
переизлученные фотоники от неподвижного отрицательного заряда -Фэ (электрическое поле);
переизлученные фотоники от принятого положительного направления электрического тока +Фм (магнитное поле);
переизлученные фотоники от принятого отрицательного направления электрического тока -Фм (магнитное поле).
Разберёмся, что заставляет электродвигатель вращаться и превращать электрическую энергию в механическую? То, что мы называем магнитным полем (пространство вокруг двух проводников с эл. током) – это, переизлученные движущимися зарядами, потоки фотоников. Взаимодействие, переизлученных потоков фотоников движущимися зарядами одного проводника, с движущимися зарядами другого, приводит к притяжению или отталкиванию проводников в зависимости от направления движения зарядов. Электрический двигатель упрощённо представляет собой такие проводники с эл. током. Мы изготавливаем все необходимые детали электродвигателя. Затем собираем его и пропускаем по его обмоткам (статор и ротор) эл. ток, соответствующего направления. Это всего лишь подготовка. А вращение ротора (взаимодействие переизлученных потоков фотоников движущимися зарядами одного проводника с движущимися зарядами другого проводника) производит эфир, мы только наблюдаем. Эфир материален. Его частицы имеют массу, энергию и могут производить работу. Следует отметить, что плотность нейтриников и фотоников, составляющих эфир, довольно постоянна. А плотность потоков фотоников, переизлученных зарядами, не постоянна, а зависит от величины зарядов и расположения их в пространстве.
Используемые источники
1. Николаев С.А. “Эволюционный круговорот материи во Вселенной”. 8-ое издание,
СПб, 2015 г., 320 с.

Читайте также:  Инструкция по действию при поражению электрическим током

Статья со всеми формулами через редактор в разделе рецензии

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2021. Портал работает под эгидой Российского союза писателей. 18+

Источник



Магнитное взаимодействие токов

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Ханса Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик Андре Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

Читайте также:  Физика определение круговой ток

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды. Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора . Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 1.16.1.

Линии магнитной индукции полей постоянного магнита и катушки с током. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции

Читайте также:  Простой расчет тока короткого замыкания

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δl, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

Эта сила называется силой Ампера. Она достигает максимального по модулю значения Fmax, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:

Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:

В общем случае сила Ампера выражается соотношением:

Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10 –4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 1.16.2).

Правило левой руки и правило буравчика

Если угол α между направлениями вектора и тока в проводнике отличен от 90°, то для определения направления силы Ампера более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 1.16.2). Правило буравчика часто называют правилом правого винта.

Одним из важных примеров магнитного взаимодействия является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

В Международной системе единиц СИ коэффициент пропорциональности k принято записывать в виде:

где μ – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

μ = 4π·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Формула, выражающая закон магнитного взаимодействия параллельных токов, принимает вид:

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы и магнитной индукции параллельных токов I1 и I2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис. 1.16.3).

Магнитное поле прямолинейного проводника с током

Магнитное взаимодействие параллельных и антипараллельных токов

Рис. 1.16.4 поясняет закон взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2·10 –7 Н на каждый метр длины.

Источник