Меню

Какова зависимость силы тока в проводнике от напряжения между его концами

Самостоятельная работа по физике Зависимость силы тока от напряжения 8 класс

Самостоятельная работа по физике Зависимость силы тока от напряжения 8 класс с ответами. Самостоятельная работа представлена в двух вариантах , в каждом по 3 задания.

Вариант 1

1. Как зависит сила тока в цепи от величины, характеризующей электрическое поле, действующее на заряженные частицы?

2. По данным, приведенным в таблице, постройте график зависимости силы тока в проводнике от напряжения между концами этого проводника.

I, А 0,5 1 1,5 2 2,5
U, В 2 4 6 8 10

3. При напряжении на концах участка цепи, равном 4 В, сила тока в проводнике 0,8 А. Каким должно быть напряжение, чтобы в этом проводнике сила тока была 0,4 А?

Вариант 2

1. Начертите схему электрической цепи для определения зависимости силы тока от напряжения.

2. При напряжении на концах участка цепи, равном 1 В, сила тока в проводнике 0,25 А. Какой будет сила тока в проводнике, если напряжение на его концах увеличится до 2 В?

3. Определите по графику зависимости силы тока от напряжения (рис. 55), какова сила тока в проводнике при напряжении 6 В.

Рисунок 55

Ответы на самостоятельную работу по физике Зависимость силы тока от напряжения 8 класс
Вариант 1
1. Сила тока зависит от напряжения прямо пропорционально
2.
График
3. U2 = 2 В
Вариант 2
1.
Схема
2. I2 = 0,5 А
3. 3. По графику при напряжении 6 В сила тока в проводнике равна 1,5 А

Источник

§ 42. Зависимость силы тока от напряжения

Различные действия тока, такие как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней.

Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи.

Но действие поля характеризуется физической величиной — напряжением (§ 39). Поэтому можно предположить, что сила тока зависит от напряжения. Установим эту зависимость на опыте.

На рисунке 68, а изображена электрическая цепь, состоящая из источника тока, амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединённого к спирали вольтметра. На рисунке 68, б показана схема этой цепи (прямоугольником условно обозначен проводник).

Установка для определения зависимости силы тока от напряжения

Рис. 68. Установка для определения зависимости силы тока от напряжения

Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому источнику второй такой же источник питания и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трёх источниках напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.

Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нём. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

На рисунке 69 показан график зависимости силы тока в проводнике от напряжения между концами этого проводника.

График зависимости силы тока в проводнике от напряжения

Рис. 69. График зависимости силы тока в проводнике от напряжения

На графике в условно выбранном масштабе по горизонтальной оси отложено напряжение в вольтах, а по вертикальной — сила тока в амперах.

Источник

Зависимость силы тока от напряжения — формула, график и законы

Общие сведения

Любое физическое тело состоит из молекул и атомов. Эти частицы взаимодействуют между собой. Они могут притягиваться друг к другу или отталкиваться. В изолированной системе элементарные частицы являются носителями заряда. В спокойном состоянии, то есть когда на тело не оказывается внешнего воздействия, алгебраическая сумма энергии частиц всегда постоянная величина. Это утверждение называется законом сохранения электрического заряда.

Частицы хаотично могут перемещаться по кристаллической решётке, но их движение компенсируется. Поэтому ток не возникает. Но если к телу приложить внешнюю силу, то свободные электроны начинают двигаться в одну сторону. Это упорядоченное движение заряженных частиц и называют электрическим током. Количественно его можно описать через силу.

Упорядочено заряды заставляет двигаться электрическое поле, вдоль линий которого и происходит перемещение. Впервые этот термин ввёл Фарадей. Он сумел выяснить, что вокруг любого носителя существует особый вид материи, влияющий на поведение других частиц. За силовую характеристику электрического поля было взято отношение действующей силы к величине заряда, помещённого в данную точку: E = F / q. Назвали эту характеристику напряжённостью.

Читайте также:  Векторная диаграмма для токов в катушке

Изучение поля позволило экспериментально открыть принцип суперпозиции. То есть установить, что напряжённость поля, созданного системой зарядов, равна геометрической сумме величин, существующих у отдельных носителей: E = Σ E1 + E2 +…+ En. Напряжённость прямо пропорциональна напряжению, которое, в свою очередь, равняется разности потенциалов между двумя точками.

По сути, это работа электрического поля, совершаемая для переноса единичного заряда из одного места в другое: U = A / q = E * d, где d – расстояние между точками. Значение напряжения зависит от нескольких факторов:

  • строения тела;
  • температуры;
  • сопротивления.

Самое большее влияние оказывает последняя величина. Именно она характеризует способность материала препятствовать прохождению тока, то есть определяет проводимость. Сопротивление зависит от длины проводника и его сечения: R = (p * l) / S, где p – параметр обратный удельной проводимости (справочное значение). Он численно равняется сопротивляемости однородного проводника единичной длины и площади сечения.

Подтверждение закона Ома

Бум исследования электрических явлений пришёлся на конец XVIII – начало XIX веков. Такие учёные, как Фарадей, Ампер, Вольт, Эрстед, Кулон, Лачинов, Ом провели ряд экспериментов, которые позволили Максвеллу создать теорию электромагнитных явлений.

Огромную роль в открытии новых знаний сыграл опыт Ома исследовавшего, от чего зависит сила тока в цепи. Немецкий физик ставил опыты над проводимостью различных материалов. Для этого он использовал электрическую цепь, в разрыв которой подключал проводники разной длины и замерял силу тока.

Изначально учёный не смог установить закономерность. Всё дело в том, что для своих опытов Ом использовал химическую батарею. Друг учёного Поггендорф предложил взять термоэлектрический источник тока. В итоге физик смог проследить зависимость. Описал он её так: частное от a, разделённого на l + b, где b определяет интенсивность воздействия на проводника длиною l, причём a и b — постоянные, зависящие соответственно от действующей силы и сопротивления элементов цепи.

Обычно при изучении закона в седьмом классе средней школы учитель демонстрирует эту зависимость на практических уроках. Для этого чтобы ученики удостоверились в справедливости утверждения, преподаватель собирает электрическую цепь, в состав которой входят:

  • вольтметр – прибор для измерения напряжения, включается параллельно измеряемому проводнику;
  • амперметр – устройство для замера тока, подключается последовательно с измеряемым телом;
  • регулируемый источник электродвижущей силы (ЭДС).

Суть опыта заключается в подключении проводников с разной длиной. Измеренные результаты заносят в таблицу. Она должна иметь примерно следующий вид:

Первое тело Второе тело Третье тело
U, В I, А U, В I, А U, В I, А
1 0,5 1 0,4 1 0,2
2 1 2 0,6 2 0,3
3 1,5 3 0,8 3 0,4
4 2 4 1 4 0,5

Проведя анализ таблицы, можно сделать вывод. Если для любого тела напряжение разделить на соответствующую ему силу тока, то получится одно и то же число. Следовательно, это отношение является свойством проводника. Для первого оно равно двум, второго – пяти, а третьего – десяти. При одинаковых токах в третьем случае число больше, значит, это тело оказывает большее сопротивление току.

Полученные значения по факту и являются величинами, обратными проводимости. Обозначают их буквой R (resistance).

График зависимости

По результатам эксперимента Ом построил график зависимости силы тока от сопротивления, который напоминает собой левую часть параболы. Современная запись закона Ома имеет вид: I = U / R. Звучит она следующим образом: ток прямо пропорционален напряжению и обратно пропорционален электрическому сопротивлению.

Но при разработке приборов или исследовании участка цепи перед учёными и инженерами стоит задача, прежде всего, выяснить зависимость тока от напряжения. Поэтому ими строится график, в котором по оси абсцисс откладывают значение потенциала, а ординат — силы тока. В итоге если отложить соответствующие точки, то должна получиться прямая линия. Это говорит о том, что зависимость величин линейная. То есть во сколько раз увеличивается напряжение, во столько же возрастает сила тока.

Такого вида график называется вольт-амперной характеристикой (ВАХ). Но при реальных измерениях изменение ток зависит ещё от температуры. Установлено, что при нагреве сопротивление проводника увеличивается. Поэтому прямая на ВАХ будет иметь меньший угол наклона. Кроме того, ток может быть двух видов:

  • постоянный – сила не изменяется от времени;
  • переменный – изменяющийся по синусоидальному закону.
Читайте также:  Утечка тока с аккумулятора при выключенном зажигании калина

Поток носителей заряда для второго вида описывается гармоническим законом: I(t) = Im * cos (wt + f), где: w – циклическая частота, f – сдвиг фаз относительно напряжения, Im – наибольшее значение тока. Тогда изменение напряжения во времени можно записать так: U(t) = Um * cos (wt). В этом случае закон Ома примет вид: I = U / Z, где Z – полное сопротивление цепи.

График зависимости силы тока от времени, впрочем, как и напряжения, будет представлять собой синусоиду. Если отложить их на одном рисунке, то при активном сопротивлении (резистор) фазы величин будут совпадать друг с другом. В схеме, содержащей реактивные составляющие, а это ёмкость, и индуктивность, фаза тока соответственно будет опережать и отставать от напряжения. Угол изменения составит девяносто градусов.

Графики зависимости позволяют определить мощность. Сделать это можно, воспользовавшись формулой: P = U * I * cos(f). Чтобы построить график мощности, нужно аппроксимировать на ось t точки синусоиды I(t) и U(t), в которых параметры изменяют свой знак.

Характеристика P(t) будет также описываться по гармоническому закону. Причём в каждой этой точке линя изменит направление.

Простейшие задачи

Зависимость, установленную экспериментальным путём, широко используют при проектировании электронных схем различных устройств. С помощью закона Ома рассчитывают нужное сопротивление резисторов для той или иной цепи, вычисляют значение тока при определённом напряжении.

Вот некоторые из таких заданий:

  1. Пусть имеется схема, подключённая к источнику, выдающему 60 вольт. Определить, какой ток потечёт через резистор 30 Ом. Согласно правилу, связывающему три фундаментальных величины: I = U / R. Так как по условию все нужные данные известны, то необходимо их просто подставить в формулу и выполнить вычисления: I = 60 В / 30 Ом = 2 А. Задача решена. Ответ: через резистор потечёт ток равный двум амперам.
  2. Построить графики зависимости для двух проводников имеющих сопротивление пять и пятнадцать ом. В задании требуется нарисовать ВАХ. Так как напряжения не указаны, то их можно брать любыми. Используя формулу Ома, нужно определить ток для произвольных значений потенциала. График зависимости – прямая. Значит, нужно отложить две точки. Чтобы правильно разметить значения необходимо выбрать масштаб. Поэтому вначале следует посчитать максимальное значение тока. Пусть за наибольшее напряжение будет принято U = 50 В. Тогда, Im1 = 50 / 5 = 10 А, Im2 = 50 / 10 = 5 А. Теперь останется отложить полученный результат на графике и провести линию через ноль и эти точки.
  3. Определить ток, потребляемый электрочайником, если его спираль имеет сопротивление 40 Ом, а напряжение сети равно 220 вольт. Пример решается по простой формуле: I = U / R = 220 В / 40 Ом = 5, 5 А. Задача решена.
  4. В вольтметре, показывающем 120 вольт, ток составляет 15 миллиампер. Найти сопротивление прибора. Из формулы зависимости можно выразить сопротивление. Оно будет равно: R = U / I. При этом, чтобы получить правильный ответ, миллиамперы следует перевести в амперы. Решение будет иметь вид: R = 120 В / 15 * 10 -3 А = (120 * 10 3 ) / 15 = 8 * 10 3 Ом = 8 кОм. Итак, внутреннее сопротивление вольтметра составит восемь килоом.

Следует отметить, что в школьных задачах не учитываются характеристики источника тока.

По умолчанию считают, что он имеет бесконечно малое внутреннее сопротивление. Но на самом деле это не так. Электродвижущая сила генератора электрической энергии затрачивается как на внутренние, так и внешние потери. Поэтому формула закона Ома для полной цепи имеет вид: I = (U0 + U) / R + r, где: U0 – внутреннее падение напряжения, r0 – сопротивление источника.

Источник

Зависимость силы тока от напряжения

Величина силы тока

По определению силой тока называется физическая величина равная величине заряда q, прошедшего через поперечное сечение проводника за время t:

Если сила тока не зависит от времени, то такой электрический ток называется постоянным. Рассмотрим далее именно такой случай, когда ток постоянен. Измерить величину заряда чрезвычайно трудно, поэтому в 1826 г. немецкий физик Георг Ом поступил следующим образом: в электрической цепи, состоящей из источника напряжения (батареи) и сопротивления, он измерял величину тока при разных значениях сопротивления. Затем, не меняя величину сопротивления, он стал изменять параметры источника напряжения, подключая сразу, например, два-три источника. Измеряя величину тока в цепи, он получил зависимости силы тока от напряжения U и от сопротивления R.

Схема измерений тока и напряжения Георга Ома

Рис. 1. Схема измерений тока и напряжения Георга Ома.

Закон Ома

В результате проведенных исследований Георг Ом обнаружил, что отношение напряжения U между концами металлического проводника, являющегося участком электрической цепи, к силе тока I в цепи есть величина постоянная:

где R электрическое сопротивление. Данная формула называется законом Ома, который до сих пор является основным расчетным инструментом при проектировании электрических и электронных схем.

Если по оси абсцисс отложить значения напряжения, а по оси ординат — значения тока в цепи при данных значениях напряжения, то получится график зависимости силы тока I от напряжения U.

График зависимости силы тока от напряжения

Рис. 2. График зависимости силы тока от напряжения.

Из этого графика видно, что эта зависимость линейная. Угол наклона прямой зависит от величины сопротивления. Чем больше R, тем меньше угол наклона.

График зависимости силы тока от сопротивления

Рис. 3. График зависимости силы тока от сопротивления.

Если зафиксировать напряжение U и по оси абсцисс откладывать значения R электрического сопротивления, то из полученного графика видно, что эта зависимость уже нелинейная — с ростом сопротивления поведение тока описывает обратно пропорциональной функцией — гиперболой.

Закон Ома перестает работать при больших величинах тока, так как начинают работать дополнительные эффекты, связанные с тепловым разогревом вещества, ростом температуры. В газах при больших токах возникает пробой, ток растет лавинообразно, отклоняясь от линейного закона.

От чего зависит величина сопротивления

Эксперименты показывают, что сопротивление проводника прямо пропорционально его длине L и обратно пропорционально площади поперечного сечения S:

где ρ удельное электрическое сопротивление вещества.

Единицы измерения

В международной системе единиц СИ единица измерения электрического сопротивления называется “ом” в честь физика Георга Ома. По определению электрическим сопротивлением 1 Ом обладает участок цепи, на котором падает напряжение 1 В при силе тока 1 А.

Единица измерения удельного сопротивления получается производной от единиц величин, входящих в фориулу: сопротивления, длины и площади. То есть в системе СИ получатся, что если R = 1 Ом, S = 1 м 2 , а L = 1 м, то ρ = 1 .

Это и есть единица измерения удельного сопротивления. Но на практике оказалось, что у реальных проводов площади сечений гораздо меньше 1 м 2 . Поэтому было решено при вычислении ρ использовать значение площади S в мм 2 , чтобы итоговое значение имело компактный вид. Тогда получаются более удобные (меньше нулей после запятой) для восприятия числовые значения удельного сопротивления:

Величину тока измеряют амперметром, а величину напряжения — вольтметром. При проведении очень точных измерений, необходимо учитывать внутреннее сопротивление этих приборов.

Что мы узнали?

Итак, мы узнали, что зависимость силы тока в электрической цепи описывается с помощью закона Ома. Сила тока I прямо пропорциональна величине U напряжения, и обратно пропорциональна сопротивлению R.

Источник



Вопросы § 44

Физика А.В. Перышкин

1.Пользуясь рисунком 71, расскажите, как при помощи опыта устанавливают зависимость силы тока в участке цепи от сопротивления этого участка.

Чтобы установить зависимость силы тока в цепи от сопротивления, можно провести опыт по схеме рис. 71, в ней источником тока является аккумулятор, а в цепь поочередно включают про­водники, обладающие различными сопротивления­ми. Напряжение на проводниках во время опыта поддерживается постоянным, вольтметр показывает его. — 2 В.

Силу тока измеряют амперметром, включен­ным, естественно последовательно с проводником и аккумулятором в цепь.

Три сопротивления имеют значения 1 Ом, 2 Ом, 4 Ом, соответственно токи наблюдались 2 А, 1 А и 0,5 А. Таким образом сила тока обратно пропорциональна сопротивлению проводника.

2. Какова зависимость силы тока в проводнике от сопротивления этого проводника?

Сила тока в проводнике обратно пропорциональна сопротивлению этого проводника.

3. Как формулируется закон Ома?

Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участке и обратно пропорциональны его сопротивлению.

4.Как выразить напряжение на участке цепи, зная силу тока в нём и его сопротивление?

I = U/R, где / — сила тока в участке цепи, U — напряжение в участке, R — сопротивление участка цепи.

5. Как выразить сопротивление участка цепи, зная напряжение на его концах и силу тока в нём?

Источник