Меню

Катушка переменного тока в цепях постоянного тока

Катушка индуктивности в цепи постоянного и переменного тока

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

феррит

Намотать на него лакированного медного провода и зачистить выводы:

самодельная катушка индуктивности

Замеряем индуктивность нашей катушки с помощью LC метра:

как замерить индуктивность катушки

Теперь собираем все это вот по такой схеме:

L – катушка индуктивности

La – лампочка накаливания на напряжение 12 Вольт

Bat – блок питания, с выставленным напряжением 12 Вольт

катушка индуктивности в цепи постоянного тока

Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:

конденсатор в цепи постоянного тока

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Катушка индуктивности в цепи постоянного и переменного тока

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Катушка индуктивности в цепи постоянного и переменного тока

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Катушка индуктивности в цепи постоянного и переменного тока

Итак, прогоняем все по тем же значениям частоты

При частоте в 1 Килогерц у нас значение почти не изменилось.

Здесь тоже ничего не изменилось.

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

Сдвиг фаз стал больше и амплитуда просела еще больше

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

П – постоянная и равна приблизительно 3,14

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Видео про катушку индуксивности:

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

Источник

Катушка индуктивности. Устройство и принцип работы.

Катушка индуктивности

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Читайте также:  Определить токи в ветвях методом непосредственного использования законов кирхгофа

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Источник

Катушка индуктивности. Параметры. Виды. Обозначение на схемах

Здравствуйте, уважаемые читатели сайта sesaga.ru. Катушка индуктивности относится к числу элементов, без которых не получится построить приемник, телевизор, радиоуправляемую модель, передатчик, генератор сигналов, модемный преобразователь, сетевой фильтр и т.п.

Катушку индуктивности или просто катушку можно представить в виде нескольких витков провода намотанного в спираль. Ток проходя по каждому витку спирали создает в них магнитное поле, которое пересекаясь с соседними витками наводит в них э.д.с самоиндукции. И чем провод длиннее и большее число витков он образует, тем самоиндукция больше.

Катушка индуктивности

Индуктивность

По своей сути индуктивность является электрической инерцией и ее основное свойство состоит в том, чтобы оказывать сопротивление всякому изменению протекающего тока. Если через катушку пропускать определенный ток, то ее индуктивность будет противодействовать как уменьшению, так и увеличению протекающего тока.

В отличие от конденсатора, который пропускает переменный и не пропускает постоянный ток, катушка индуктивности свободно пропускает постоянный ток и оказывает сопротивление переменному току, потому что он изменяется быстрее, чем может изменяться магнитное поле.

И чем больше индуктивность катушки и чем выше частота тока, тем оказываемое сопротивление сильнее. Это свойство катушки применяют, например, в приемной аппаратуре, когда требуется в электрической цепи преградить путь переменному току.

Индуктивность измеряется в генри (Гн), миллигенри (1мГн = 10ˉ3 Гн), микрогенри (1мкГн = 10ˉ6 Гн), наногенри (1нГн = 10ˉ9 Гн) и обозначается латинской буквой L.

Общие свойства катушек индуктивности

В зависимости от требуемой индуктивности и частоты, на которой катушка будет работать, она может иметь самые различные исполнения.

Для высоких частот это может быть простая катушка состоящая из нескольких витков провода или же катушка с сердечником из ферромагнитного материала и иметь индуктивность от нескольких наногенри до нескольких десятков миллигенри. Такие катушки применяются в радиоприемной, передающей, измерительной аппаратуре и т.п.

Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. В свою очередь катушки контуров могут быть с постоянной индуктивностью и переменной индуктивностью (вариометры).

По конструктивному признаку высокочастотные катушки разделяются на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными и немагнитными сердечниками, бескаркасные, цилиндрические плоские и печатные.

Внешний вид катушек индуктивности

Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью. Их индуктивность достигает десятки и даже сотни генри, а в обмотках могут создаваться большие напряжения и протекать значительные токи.

Для увеличения индуктивности при изготовлении таких катушек применяют магнитопроводы (сердечники), собранные из отдельных тонких изолированных пластин сделанных из специальных магнитных материалов – электротехнических сталей, пермаллоев и др.

Применение наборных магнитопроводов обусловлено тем, что под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, образуются вихревые токи, которые нагревают магнитопровод, бесполезно потребляя часть энергии магнитного поля. Изоляция же между слоями стали оказывается на пути вихревых токов и значительно снижает потери.

Катушки с магнитопроводами из изолированных пластин можно разделить на дроссели и трансформаторы.

Внешний вид дросселей и трансформаторов

Основные параметры катушек индуктивности

Свойства катушек могут быть охарактеризованы четырьмя основными параметрами: индуктивностью, добротностью, собственной емкостью и стабильностью.

1. Индуктивность.

Индуктивность (коэффициент самоиндукции) является основным электрическим параметром и характеризует величину энергии, запасаемой катушкой при протекании по ней электрического тока. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле.

Индуктивность зависит от размеров каркаса, формы, числа витков катушки, диаметра и марки провода, а также от формы и материала магнитопровода (сердечника).

В радиолюбительских схемах, как правило, величину индуктивности не указывают, так как радиолюбителя интересует не эта величина, а количество витков провода в катушке, диаметр и марка провода, способ намотки (внавал, виток к витку, крест на крест, секционная намотка) и размеры каркаса катушки.

2. Добротность.

Добротность (Q) характеризуется качеством работы катушки индуктивности в цепях переменного тока и определяется как отношение реактивного сопротивления катушки к ее активному сопротивлению потерь.

Активное сопротивление включает в себя сопротивление провода обмотки катушки; сопротивление, вносимое диэлектрическими потерями в каркасе; сопротивление, вносимое собственной емкостью и сопротивления, вносимые потери в экраны и сердечники.

Чем меньше активное сопротивление, тем выше добротность катушки и ее качество. В большинстве случаев добротность катушки определяют резонансные свойства и к.п.д. контура.
Современные катушки средних размеров имеют добротность около 50 – 300.

3. Собственная емкость.

Катушки индуктивности обладают собственной емкостью, которая увеличивается по мере увеличения числа витков и размеров катушки. Между соседними витками существует межвитковая емкость, из-за которой некоторая часть тока проходит не по проводу, а через емкость между витками, отчего сопротивление между выводами катушки уменьшается.

Все дело в том, что общее напряжение, приложенное к катушке, разделяется на межвитковые напряжения из-за чего между витками образуется электрическое поле, вызывающее скопление зарядов. Витки, разделенные слоями изоляции, образуют обкладки множества маленьких конденсаторов, через которые протекает часть тока, из общей емкости которых и складывается собственная емкость катушки. Таким образом катушка обладает не только индуктивными но и емкостными свойствами.

Собственная емкость является вредным параметром и ее стремятся уменьшить применением специальных форм каркаса и способом намотки провода.

4. Стабильность.

Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени.

Изменение индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ), равным относительному изменению индуктивности при изменении температуры на 1°С. ТКИ катушки определяется способом намотки и качеством диэлектрика каркаса.

Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Для защиты от действия влажности применяется герметизация или пропитка и обволакивание обмотки негигроскопичными составами.

Такие катушки обладают более низкой добротностью и большой собственной емкостью, но при этом они более устойчивы к воздействию влаги.

Катушки индуктивности с магнитопроводами

Для получения малогабаритных катушек различного назначения применяют магнитопроводы (сердечники), которые изготавливают из магнитодиэлектриков и ферритов. Катушки с магнитопроводами имеют меньшее число витков при заданной индуктивности, малую длину провода и небольшие размеры.

Ценным свойством катушек с магнитопроводами является возможность их подстройки, т.е. изменения индуктивности в небольших пределах путем перемещения внутри катушки специального цилиндрического подстроечника, состоящего из феррита с напрессованной на него резьбовой втулкой.

Катушка индуктивности с магнитопроводом

Магнитодиэлектрики представляют собой измельченное вещество, содержащее в своем составе железо (ферромагнетик), частицы которого равномерно распределены в массе диэлектрика (бакелита или аминопласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферриты представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество – полупроводниковая керамика – обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

Основным достоинством ферритов является высокая магнитная проницаемость, которая позволяет существенно уменьшить размеры катушек.

В старых принципиальных схемах магнитопроводы из магнитодиэлектриков и ферритов обозначались одинаково – утолщенной штриховой линией (рис. а). Впоследствии стандарт ЕСКД оставил этот символ для магнитопроводов из магнитодиэлектрика, а для ферритовых ввел обозначение, ранее применявшееся только для магнитопроводов низкочастотных дросселей и трансформаторов – сплошную жирую линию (рис. б). Однако согласно последней редакции ГОСТ 2.723.68 (март 1983г.) магнитопроводы катушек изображают линиями нормальной толщины (рис. в).

Обозначение магнитопроводов из ферритов на схемах

Катушки, индуктивность которых можно изменять с помощью магнитопровода, на электрических схемах указываются при помощи знака подстроечного регулирования, который вводится в ее условное обозначение.

Изменение индуктивности обозначают двумя способами: либо знаком подстроечного регулирования пересекающим обозначения катушки и магнитопровода (рис. а), либо только пересечением магнитопровода с изображением его над катушкой (рис. б).

Обозначение катушек с регулируемой индуктивностью

Экранированные катушки индуктивности

Для устранения паразитных связей, обусловленных внешним электромагнитным полем катушки и влияния на катушку окружающего пространства, ее экранируют, т.е. помещают в замкнутом металлическом экране.

Отечественные катушки индуктивности с экраном

Зарубежные катушки индуктивности с экраном

Однако под влиянием экрана изменяются основные электрические параметры катушки: уменьшаются индуктивность и добротность, увеличивается сопротивление и собственная емкость.

Изменение параметров катушки тем больше, чем ближе к ее виткам расположен экран, т.е. изменение параметров зависит от соотношения между размерами катушки и размерами самого экрана.

Для высокочастотных катушек экраны выполняются в виде круглых или прямоугольных стаканов из алюминия, меди или латуни с толщиной стенок 0,3 – 0,5 мм.

Чтобы на схемах обозначить экранированную катушку, ее условное обозначение помещают в знак экранирования, который соединяют с корпусом.

Обозначение на схемах экранируемых катушек индуктивности

Также необходимо отметить, что экранировать необходимо лишь катушки большого размера, диаметр которых составляет более 15 – 20 мм.

Катушки диаметром не более 4 – 5 мм создают магнитное поле в относительно небольшом пространстве и при удалении таких катушек от других деталей на расстояние в 4 – 5 раз больше их диаметра опасных связей, как правило, не возникает, поэтому они не нуждаются в специальном экранировании.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

Обозначение катушек с отводами на схемах

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Обозначение на схемах начала обмотки катушки

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Обозначение катушек с немагнитным подстроечником

Вот и все, что хотел рассказать о катушках индуктивности.
Удачи!

Литература:
1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры».
2. В. В. Фролов «Язык радиосхем».
3. М. А. Сгут «Условные обозначения и радиосхемы».

Источник



13. Катушки индуктивности и постоянный ток

ЭКСПЕРИМЕНТ 13 Катушки индуктивности и постоянный ток

После проведения данного эксперимента. Вы сможете продемонстрировать и сформулировать эффект индуктивности в цепи постоянного тока.

Необходимые принадлежности

* Цифровой мультиметр

* Источник постоянного напряжения (от 9 до 15 В)

* Неоновая лампа (NE-2) с проволочными выводами

ВВОДНАЯ ЧАСТЬ

Индуктивность — это свойство электронного компонента противодействовать изменениям тока, протекающего через данный компонент.

Индуктивностью обладают компоненты, которые называются катушками индуктивности, соленоидами или дросселями. Если ток, протекающий в катушке индуктивности, изменяется, свойство индуктивности противодействует такому изменению тока. Если ток увеличивается, катушка индуктивности препятствует росту тока. Если ток уменьшается, катушка индуктивности снова пытается сохранить ток без изменения. Эффект индуктивности заметен в первую очередь в тех схемах, где используется переменный ток. Противодействие переменному току, оказываемое катушкой индуктивности, называется индуктивным сопротивлением. Подобно сопротивлению резистора индуктивное сопротивление оказывает фиксированное противодействие, которое контролирует уровень тока в схеме.

В схемах постоянного тока, в которых ток обычно имеет фиксированное значение, определяемое сопротивлениями и напряжениями, катушки индуктивности обычно имеют лишь незначительный эффект или вообще не имеют никакого эффекта. Тем не менее, они оказывают влияние на постоянный ток, и важно ясно представлять себе это явление.

Катушки индуктивности в схемах постоянного тока

Первичным назначением катушки индуктивности в схеме постоянного тока является оказание противодействия в форме сопротивления. Катушки индуктивности обычно представляют собой проволочные спирали, которые создают сопротивление. Хотя резистивное сопротивление катушки индуктивности обычно низко, катушка создает противодействие. В дополнение мощность рассеивается сопротивлением катушки индуктивности.

Эффекты индуктивности проявляются, когда изменяется ток в цепи постоянного тока. Хотя ток обычно имеет фиксированную величину в работающей схеме постоянного тока, не забывайте также, что необходимо еще включать и выключать

схему. Когда ток первоначально подается в схему или удаляется их схемы, имеет место его значительное изменение. Такое изменение тока заставляет катушку индуктивности противодействовать этому изменению. В результате появляется наведенное (индуктированное) напряжение, которое, как и в схеме переменного тока, противодействует изменению тока.

Наиболее значительный эффект достигается в том случае, когда ток через катушку индуктивности внезапно подавляется. Магнитное поле вокруг катушки индуктивности исчезает, индуцируя очень высокое напряжение в катушке. Это напряжение может даже приводить к повреждениям компонентов в некоторых случаях. В других применениях, наоборот, используется преимущество этого эффекта с целью формирования очень высокого напряжения для питания тех или иных специальных компонентов или цепей. Примерами могут служить трансформаторы строчной развертки в телевизионных приемниках и катушки зажигания в системах зажигания автомобилей.

Краткое содержание

В данном эксперименте Вы будете знакомиться с эффектами катушки индуктивности в схеме постоянного тока.

1. Для данного эксперимента Вы будет использовать первичную обмотку трансформатора. Эта обмотка идентифицируется двумя черными выводами. Все другие выводы игнорируйте.

Измерьте сопротивление катушки индуктивности. Запишите полученное значение.

Сопротивление постоянному току = _____ Ом

2. Предскажите, какой величины ток может быть в катушке индуктивности, если к ней приложить напряжение 15В от источника питания. Ток = ____ мА

3. Подключите источник питания 15 В к катушке индуктивности и измерьте постоянный ток, протекающий через катушку. Обратитесь к рисунку 13-1. Запишите величину протекающего тока.

Измеренный ток = _____ мА

1-131.jpg

Рис. 13-1. Первичная обмотка, используемая в качестве катушки индуктивности.

4. Какой эффект оказывает источник на катушку индуктивности, и какой эффект оказывает катушка индуктивности на ток в цепи?

5. Рассмотрите неоновую лампу. Это маленькая стеклянная лампочка с тонкими проволочными выводами. Подключите неоновую лампу параллельно с катушкой индуктивности, как показано на рисунке 13-2. Неоновая лампа загорится только в том случае, если напряжение на ее выводах превышает приблизительно 70—90В.

6. Приложите напряжение 15В от источника питания к катушке индуктивности, как показано

на рисунке 13-2. Заметьте состояние неоновой лампы. Включена или выключена неоновая лампа?

Состояние лампы________________

1-132.jpg

7. Отсоедините один вывод катушки индуктивности от источника питания и снова заметьте состояние неоновой лампы.

Состояние лампы ________________

8. Повторите шаги 6 и 7 несколько раз, чтобы наверняка увидеть, что происходит.

9. Объясните эффект, который Вы наблюдаете в шагах 7 и 8.

ОБЗОРНЫЕ ВОПРОСЫ

I. Катушка индуктивности противодействует изменениям;

2. Другое название для катушки индуктивности:

3. Все катушки (соленоиды) имеют сопротивление:

а) высказывание истинно,

б) высказывание ложно.

4. Противодействие постоянному току, оказываемое катушкой индуктивности, называется:

в) реактивным сопротивлением,

г) полным сопротивлением.

5. Напряжение 30 вольт подается на 90-вольтовую неоновую лампу. Лампа:

Источник