Меню

Компенсация токов при соединении звездой

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).

Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).

Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.

а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

UAB = 2UА cos 30º = UА = UФ.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.

Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

По первому закону Кирхгофа

Для симметричной нагрузки

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22

Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.

Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

При отключении нейтрального провода ток I становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).

Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

Р = UI ∙ cos (U ^ I) , (50)

где U — напряжение, приложенное к обмотке напряжения ваттметра;

I — ток, протекающий по токовой обмотке ваттметра;

U ^ I = φ — угол сдвига между напряжением и током.

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Р = 3∙UФIФ ∙ cos φ или

Р = ∙UЛIФ ∙ cos φ . (51)

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Обозначим через α и β соответственно углы (UAB ^ IA) и (UCB ^ IC) . Для определения α и β построим векторную диаграмму для случая симметричной активно-индуктивной нагрузки (рис.27). Согласно построению α = 30º + φ, β = 30º – φ.

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Читайте также:  Вода в кране бьет током при стирке

Р = Р1 + Р2 = UЛIЛ ∙ [cos (30º + φ) + cos (30º – φ)] = UЛIЛ ∙ cos φ. (53)

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.

Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Q = ( Р1Р2) = UЛIЛ ∙ [cos (30º + φ) – cos (30º – φ)] = UЛIЛ ∙sin φ. (54)

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).

Рис.29. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3, А — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).

Рис.30. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3 — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В; W1 и W2 — ваттметры на напряжение 75−150−300−600 В и ток 1−2,5−5 А.

2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Измеренные величины Вычисленные величины
IA IВ IС I UA UВ UС UAВ UВС UСА UЛ/ UФ РА РВ РС Р
А А А А В В В В В В В Вт Вт Вт Вт
0,6 0,6 0,6
0,6 0,45 0,35 0,21
Измеренные величины Вычисленные величины
IA IВ IС UA UВ UС UAВ UВС UСА Р1(W1) Р2(W2) UЛ/ UФ РА РВ РС Ррасч Р(W1+W2)
А А А В В В В В В Вт Вт В Вт Вт Вт Вт Вт
0,6 0,6 0,6
0,525 0,475 0,375

1. Как относятся друг с другом ЭДС, составляющие трехфазную систему?

2. Как соединяются обмотки генератора при соединении «звездой»?

3. Чем отличается схема четырехпроводной системы трехфазного тока от схемы трехпроводной системы?

4. Что соединяет нулевой (нейтральный) провод?

5. Что такое линейные и фазные токи и напряжения и каковы соотношения между ними при соединении звездой в векторной форме?

6. Как связаны линейные и фазные напряжения в четырехпроводной системе трехфазного тока?

7. Что такое симметричная и несимметричная нагрузка?

8. Чему равна геометрическая сумма токов в четырехпроводной трехфазной системе при симметричной нагрузке?

9. Чему равен ток в нулевом проводе при симметричной нагрузке?

10. отличаются ли токи и напряжения в четырехпроводной и трехпроводной системах трехфазного тока при одинаковой симметричной нагрузке?

11. При какой нагрузке необходимо включить в трехфазную систему нулевой провод и зачем?

12. Как определить ток в нулевом проводе четырехпроводной системы при несимметричной нагрузке, зная линейные токи?

13. При каких условиях будут равны напряжения на всех фазах нагрузки в трехпроводной трехфазной системе?

14. Каков характер нагрузки в осветительных сетях?

15. Какую систему трехфазного тока нужно использовать в осветительных сетях и почему?

16. какую мощность можно определить методом двух ваттметров?

17. Чему равна активная мощность цепи при применении метода двух ваттметров?

18. В каких системах трехфазного тока может быть применен метод двух ваттметров?

19. Можно ли определить полную мощность трехфазной системы, используя метод двух ваттметров?

20. Можно ли определить коэффициент мощности трехфазной системы, используя метод двух ваттметров?

Источник

Особенности схем подключения нагрузок к тиристорному регулятору

Наиболее часто на практике используется четыре схемы подключения нагрузок к тиристорному регулятору: звезда, треугольник, звезда с рабочей нейтралью и разомкнутый треугольник.

Схемы подключения звезда и треугольник приведены на рисунке 1.

Тиристорный регулятор

Рисунок 1. Подключение нагрузки к трехфазному тиристорному регулятору по схемам звезда и треугольник

Основное достоинство этих двух схем — простота и минимальное количество силового провода, за счет чего они и получили наиболее широкое распространение. При соединении нагрузки звездой максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению Uф, а при соединении треугольником — линейному Uл. Соответственно, звездой соединяют нагрузку, рассчитанную на напряжение 220 В, а треугольником — 380 В.

Кривая тока, протекающего по фазному проводу изображена на рисунке 2.

Тиристорный регулятор

Рисунок 2. Кривая тока в фазах при соединении звездой или треугольником, активная нагрузка

Однако у простоты схемы есть обратная сторона медали — напряжения на нагрузочных сопротивлениях распределяются поровну только при условии строго равенства фазных напряжения (Uа = Ub = Uс) и равенства сопротивлений нагрузок (Ra = Rb = Rc или Rab = Rbc = Rca). Как правило, на практике это условие почти никогда не выполняется и возникает небаланс напряжений: на разных сопротивления нагрузки при полностью включенных тиристорах устанавливаются неравные напряжения, например, на одном сопротивлении 210 В, на другом 215 В, на третьем 230 В.

В большинстве своем эти небалансы невелики: разброс по напряжению невелик и составляет не больше 4-8%, что вполне допустимо. Но иногда при неудачном соотношении параметров — сильном «перекосе» фаз с одновременно неравными сопротивлениями нагрузки — напряжения могут распределиться с большим разбросом, например 190, 220 и 250 В. Это ведет к неравномерному износу ТЭНов и преждевременному выгоранию одного из них.

Читайте также:  Символ рода тока в маркировке

Довольно часто бывает, что в одной из фаз постоянно выгорает ТЭН неизвестно от чего. Обычно это является следствием выше описанного явления.

В схемах подключения звезда с рабочей нейтралью и разомкнутый треугольник (рисунок 3) это явление проявляется гораздо меньшей степени.

Тиристорный регулятор

Рисунок 3. Подключение нагрузок по схемам звезда с рабочей нейтралью и разомкнутый треугольник

При подключении нагрузки по схеме звезда с нулем максимальное напряжение на нагрузочном сопротивлении равно фазному напряжению сети, при этом ток каждой фазы определяется лишь напряжением фазы и сопротивлением нагрузочного резистора, включенного в эту фазу, и не зависит напряжений других фаз и от сопротивлений остальных нагрузочных сопротивлений, то есть Ia = Ua / Ra, Ib = Ub / Rb, Ic = Uc / Rc.

Другое важное свойство схемы — возможность выравнивания токов, напряжений и мощностей на нагрузочных сопротивлениях в случае «перекоса» фаз питающей сети. Например, тиристорный регулятор тока ТРМ-С может автоматически корректировать напряжение на нагрузке таким образом, чтобы на каждом сопротивлении нагрузки выделялась равная мощность. Это способствует продлению срока службы ТЭНов, а также энергосбережению – за счет устранения перекосов по фазам достигается дополнительная экономия электроэнергии 1-3%.

Еще один плюс этой схемы — это меньший уровень излучаемых электромагнитных помех.

Все выше сказанное также верно и для схемы разомкнутого треугольника, с той лишь разницей, что максимальное напряжение на нагрузочных сопротивлениях равно линейному, а ток нагрузки определяется линейным напряжением Iab = Uab / Rab, Ibc = Ubc / Rbc, Ica = Uca / Rca.

Недостатков у схемы звезда с нейтралью два. Первый — это необходимость подключения нулевого провода, что на практике иногда бывает затруднительно. Например, у нагревательного аппарата может быть сделано три вывода для подключения фазных проводов, а общая точка звезды — внутри аппарата и недоступна для подключения. В этом случае реализовать подключение по схемы звезды с нейтралью невозможно.

Второй недостаток — это протекание тока через нейтраль при фазо-импульсном управлении даже при полностью равных сопротивлениях нагрузки и фазных напряжениях, что проиллюстрировано на рисунке 4: в верхней его части изображены кривые токов, протекающие по фазам А, В и С, а внизу — ток в нулевом проводе.

Тиристорный регулятор

Рисунок 4. Протекание тока через нулевой проводник

При этом величина тока в нулевом проводе может быть в 1,5-2 раза больше чем ток в фазах. Это приводит к необходимости прокладки нулевого проводника увеличенным сечением, что, разумеется, увеличивает и стоимость кабельных линий. Незнание или недооценка же этого явления приводит к постепенному выходу из строя нейтрального провода.

Это иногда вызывает удивление: казалось бы, напряжения фаз равные, сопротивления фаз равные, откуда ток в нуле?! Но объясняется это явление просто. Дело в том, что при фазо-импульсном управлении тиристорами форма тока становится не синусоидальной и поэтому не происходит полной компенсации токов в нулевом проводе, как при питании трехфазной нагрузки синусоидальным током.

Отсюда вывод — чтобы ток в нулевом проводе был минимальный необходимо использовать управление пропуском периодов. В этом случае токи фаз будут синусоидальны, а значит ток в нейтрали будет определятся лишь небалансом напряжений фаз и сопротивлений. Практически, это приводит к тому, что ток в нуле становится не больше 10% от тока фазы.

Напоследок, рассмотрим схему соединения разомкнутый треугольник. У схемы есть замечательное свойство — тиристоры при таком соединении коммутируют не фазные токи, а линейные, которые меньше в 1,73 раза. Например, если ток фазы составляет 650 А, то токи в линейных проводах составляют Iл = 650 / 1,73 = 380 А. По сравнению со схемой соединения обычным треугольником, это дает возможность приобретать тиристорный регулятор на меньший номинальный ток, который соответственно дешевле и меньше в габаритах. Это показано на рисунке 5. В верхней части рисунка нагрузка соединена треугольником, при этом через тиристоры протекают токи 650 А, а значит необходимо приобретение тиристорного регулятора номинальным током не менее 700-800 А. А в нижней части нагрузка соединена разомкнутым треугольником, при этом по фазам протекает такой же ток 650 А, но поскольку тиристоры коммутируют ток 380 А, то достаточно иметь тиристорный регулятор с номинальным током 400-500 А, что в 1,5-2 раза дешевле.

Тиристорный регулятор

Рисунок 5. Сравнение схем треугольник и разомкнутый треугольник

Жаль, но несмотря на такое преимущество, эта схема не получила большого распространения. Почему? Первое, как и для звезды с нейтралью, для реализации такой схемы подключения должны быть доступны оба конца выводов нагрузок, что опять же не всегда возможно. Например, у трансформатора, первичная обмотка которого соединена треугольником чаще всего выведена только три конца, а вторые три спрятаны внутри. Второе – это увеличенная стоимость кабельного хозяйства — посмотрите внимательно на рисунок 5: при соединении разомкнутым треугольником требуется дополнительный силовой кабель («обратный» кабель от нагрузки). Учитывая высокую стоимость кабелей, можно сказать, что такая схема целессобразно лишь при небольшой длине кабельных линий до 20-30 метров при прокладке медным кабелем и до 50-70 метров при прокладке алюминиевым. При большой длине экономия, полученная от приобретения более дешевого регулятора обнуляется за счет более высокой стоимости кабельного хозяйства.

Источник

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

  • Различия между «звездой» и «треугольником» ↓
  • Соединение «звездой» и его преимущества ↓
  • Соединение «треугольником» и его преимущества ↓
  • Тип соединения «звезда-треугольник» ↓
  • Блиц-советы ↓

Соединение треугольником в двигателе

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Читайте также:  Техносфера человек электрический ток

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Схемы подключения звездой и треугольником

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Источник



Значения напряжения, тока и мощности при соединениях звездой и треугольником

Открытие великим Фарадеем закономерности: при пересечении проводником силовых линий магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник, — послужило основой для создания электрогенераторов с вращающимся ротором — магнитом. ЭДС наводится при этом в обмотках статора (смотрите — Практическое применение закона электромагнитной индукции Фарадея).

Получаемые напряжения могут быть самые разные: все зависит от конструкции генератора, от числа обмоток в статоре и способах их соединения. Однако в практической электротехнике самое широкое распространении получила трехфазная система синусоидального тока, предложенная выдающимся русским инженером М.О. Доливо-Добровольским в 1888 году (через 57 лет после открытия Фарадея).

Из всех многофазных систем трехфазная обеспечивает наиболее экономичную передачу электрической энергии на дальние расстояния и позволяет создать надежные в работе и простые по устройству генераторы, электродвигатели и трансформаторы. Но и три обмотки могут быть соединены двумя способами: «треугольником» (рис. 1) и «звездой» (рис. 2).

Схема соединения треугольником

схема соединения звездой

Фазным называют напряжение Uф создаваемое одной обмоткой, линейным Uл — напряжение между двумя линейными проводами. Другими словами, фазное напряжение — это напряжение между каждым из линейных проводов и нулевым проводом.

При соединении симметричного генератора в звезду линейное напряжение по значению в 1,73 раз больше фазного, т.е. Uk = 1,73•Uф. Это следует из того, что Uл — основание равнобедренного треугольника с острыми углами по 30°: Uл = UАВ = Uф 2 cos 30° = 1,73•Uф.

При соединении и нагрузки в звезду соответствующий линейный ток равен фазному току нагрузки. Если трехфазная нагрузка симметричная, то ток в нулевом проводе будет равен 0. В этом случае надобность в нулевом проводе вообще отпадает и трехфазная цепь превращается в трехпроводную. Это соединение называют «звезда-звезда без нулевого провода». При симметричной нагрузке фаз линейные токи по величине в 1,73 больше фазных токов, Iл = 1,73•3Iф.

При соединении трехфазного генератора звездой используются два напряжения, что выгодно отличает это соединение от соединения треугольником. Но при соединении нагрузки треугольником все фазы находятся под одним и тем же по числовому значению линейным напряжением независимо от сопротивления фаз, что важно для осветительной нагрузки — ламп накаливания.

Трехфазная система с нулевым проводом применяется для питания приемников двух напряжений, различающихся в 1,73 раз, например, лапм, включаемых на фазное напряжение, и двигателей, включаемых на линейное напряжение.

Номинальное напряжение определяется конструкцией генераторов и способом соединения его обмоток.

На рисунке 3 показаны зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником.

Зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником

По виду формулы одинаковы, казалось бы нет ни выигрыша, ни проигрыша в мощности для этих двух разновидностей электроцепей. Но не спешите с выводами.

При пересоединении из треугольника в звезду на каждую фазную обмотку приходится в 1,73 раза более низкое напряжение, хотя напряжение в сети остается прежним. Уменьшение напряжения приводит к уменьшению и тока в обмотках в те же 1,73 раза. И еще — при соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь эти токи равны. В итоге линейный ток при пересоединении в звезду уменьшился в 1,73 • 1,73 = 3 раза.

Новую мощность вычисляют действительно по той же формуле, но подставляя иные величины!

Асинхронные электродвигатели

При пересоединении электродвигателя с треугольника на звезду и питании его от той же сети мощность, развиваемая этим двигателем, снижается в 3 раза. При переключении со звезды на треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например, с 380 до 220 В.

Мощность генератора или трансформатора остается прежней, потому что напряжение и ток в каждой фазной обмотке сохраняются, хотя ток в линейных проводах возрастает в 1,73 раза. При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника на звезду происходят обратные явления: линейное напряжение сети повышается в 1,73 раза, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Источник