Меню

Ксв метр с трансформатором тока

КСВ-метр на полосковых линиях

Широко известные из радиолюбительской литературы КСВ-метры выполнены с использованием направленных ответвителей и представляют собой однослойную катушку или ферритовый кольцевой сердечник с несколькими витками провода. Указанные устройства имеют ряд недостатков, основным из которых является то, что при измерении больших мощностей появляется высокочастотная «наводка» в измерительной цепи, требующая дополнительных затрат и усилий по экранировке детекторной части КСВ-метра для уменьшения погрешности измерений, а при формальном отношении радиолюбителя к изготовлению прибора, КСВ-метр может стать причиной изменения волнового сопротивления фидерной линии в зависимости от частоты.

Предлагаемый вниманию КСВ-метр на основе полосковых направленных ответвителей лишён подобных недостатков, конструктивно выполнен в виде отдельного самостоятельного прибора и позволяет определить отношение прямой и отражённой волн в цепи антенны при подводимой мощности до 200 Вт в частотном диапазоне 1…50 МГц при волновом сопротивлении фидерной линии 50 Ом.

Схема КСВ-метра проста:

Если требуется иметь только индикатор выходной мощности передатчика или контролировать ток антенны, можно воспользоваться таким устройством:

При измерении КСВ в линиях с волновым сопротивлением отличным от 50 Ом, значения резисторов R1 и R2 следует изменить до величины волнового сопротивления измеряемой линии.

Конструкция
КСВ-метр выполнен на плате из двустороннего фольгированного фторопласта толщиной 2 мм. В качестве замены возможно использование двусторонннего стеклотекстолита.

Линия L2 выполнена на тыльной стороне платы и показана прерывистой линией. Её размеры 11×70 мм. В отверстия линии L2 под разъёмы XS1 и XS2 вставлены пистоны, которые развальцованы и пропаяны вместе с L2. Общая шина с обеих сторон платы имеет одинаковую конфигурацию и на схеме платы заштрихована. В углах платы просверлены отверстия, в которые вставлены отрезки провода диаметром 2 мм, пропаянные с обеих сторон общей шины.

Линии L1 и L3 расположены с лицевой стороны платы и имеют размеры: прямой участок 2×20 мм, расстояние между ними 4 мм и расположены симметрично продольной оси линии L2. Смещение между ними вдоль продольной оси L2 -10 мм. Все радиоэлементы расположены со стороны полосковых линий L1 и L2 и припаяны внахлёст непосредственно к печатным проводникам платы КСВ-метра. Печатные проводники платы следует посеребрить.

Собранная плата припаивается непосредственно к контактам разъёмов XS1 и XS2. Применение дополнительных соединительных проводников или коаксиального кабеля недопустимо.

Готовый КСВ-метр помещают в коробку из немагнитного материала толщиной 3…4 мм. Общую шину платы КСВ-метра, корпуса прибора и разъёмов соединяют между собой электрически.

Отсчет КСВ производят следующим образом: в поло- жениии S1 «Прямая» с помощью R3 устанавливают стрелку микроамперметра на максимальное значение (100 мкА) и переведя S1 в «Обратная», отсчитывают значение КСВ. При этом показанию прибора 0 мкА соответствует КСВ 1; 10 мкА — КСВ 1,22; 20 мкА — КСВ 1,5; 30 мкА — КСВ 1,85; 40 мкА — КСВ 2,33; 50 мкА — КСВ 3; 60 мкА — КСВ 4; 70 мкА — КСВ 5,67; 80 мкА — 9; 90 мкА — КСВ 19.

Источник

Простой мостовой КСВ-метр.
Схема широкополосного устройства измерения КСВ в диапазоне частот 1,5-430 МГц.
Онлайн калькулятор, вычисляющий КСВ по значениям измеренных прибором напряжений.

Поговорили мы на предыдущей странице про коэффициент стоячей волны и его влияние на потери, побалагурили, покурили, день прошёл, как не было, а вопрос с измерителем КСВ так и остался открытым.
А поскольку КСВ является важнейшим параметром согласования приёмо-передающих устройств, то, хочешь не хочешь, а придётся поднапрячься и отработать несколько человеко-часов, упражняясь в изготовлении измерительного прибора.
Чтобы не закружилась голова, и не перенапряглись мышцы, остановим своё внимание на самом простом, но далеко не самом плохом типе измерителей — мостовом КСВ-метре.

Рис. 1

Несмотря на внешнюю простоту, схема, приведённая на рисунке — это вполне себе работоспособная классика жанра, описанная в большом количестве авторитетных источников.
Наиболее подробно, на мой взгляд, суть этой конструкции раскрыл уважаемый автор многотомника «Антенны КВ и УКВ» И.В. Гончаренко. Процитирую часть раздела, посвящённого КСВ-метрам из 2-го тома упомянутого источника:

«3.2.9.2. Мостовой КСВ-метр.

Мостовой КСВ-метр известен очень давно. Когда я попытался найти его изобретателя (хотел сослаться точно — уж больно красивая идея), то ничего из этой затеи не вышло. Упоминаний много (первые относятся к 30-м годам прошлого века), но вот кто до этого додумался, обнаружить не удалось. А жаль, прибор-то хорош.

Его достоинства:
• Независимость выходных сигналов от частоты.
• Чрезвычайно широкий рабочий диапазон частот. Отношение Fmax/Fmin легко достигает нескольких сотен при весьма скромных конструктивных требованиях.
• Возможность работы при малых (единицы вольт) уровнях сигнала передатчика.

Недостатки:
• Высокое затухание, вносимое в линию и связанная с этим невозможность работать при большой мощности.
• Подвержен влиянию наводок, принятых измеряемой антенной.

Для настройки антенн такой прибор является лучшим решением. Но он совершенно непригоден для текущего контроля антенн во время штатной работы передатчика.

Схема мостового КСВ-метра показана на Рис. 1 .
При указанных номиналах он рассчитан на работу в линии 50 Ом в полосе 1,5…430 МГц.
Основой прибора является мост R1-R2-R3-Za, где Za — волновое сопротивление антенны.
Детектор на VD1 измеряет половину входного сигнала детектор на VD2 (включенный в диагональ моста) — сигнал разбаланса моста, пропорциональный Uотр.
Чтобы понять, как работает этот прибор, рассмотрим несколько примеров. Считаем, что на входе КСВ-метра ВЧ напряжение амплитудой 10 В.

1. Za = 50 Ом. На диоде VD1 5 В (1/2 от входного напряжения с делителя R2, R3) и Uпад = 5 В (считаем, что диоды германиевые, или Шоттки, с очень малым прямым напряжением). На антенне тоже 5 В (Za = R1). На обоих выводах VD2 равные и синфазные напряжения, значит на диоде напряжения нет и Uотр = 0 В. По формуле КСВ = (Uпад+Uотр)/(Uпад-Uотр) = 1, что и есть на самом деле.
На резисторах R1-R3 рассеивается 75% мощности передатчика. Именно поэтому мостовой КСВ-метр пригоден только для измерений и настройки, но не при работе передатчика на антенну.

2. Za = 0 Ом. Короткое замыкание. Ясно, что реальный КСВ при этом равен бесконечности. На VD1 все те же 5 В и Uпад= 5 В. На антенне 0В (КЗ в нагрузке). На аноде VD2 5 В ВЧ, на катоде ВЧ нет. Значит, на диоде VD2 есть ВЧ (5 — 0) = 5 В. Uотр = 5 В. По формуле КСВ = (Uпад+Uотр)/(Uпад-Uотр) измеренный КСВ равен бесконечности.

3. Za равен бесконечности. Обрыв. Реальный КСВ тоже равен бесконечности. На VD1 все те же 5 В и Uпад= 5 В. На антенне все те же входные 10 В. На аноде VD2 те же 5 В ВЧ, на катоде 10. Значит, на диоде VD2 есть ВЧ (10 — 5) = 5 В. Uотp= 5 В. По формуле КСВ = (Uпад+Uотр)/(Uпад-Uотр) измеренный КСВ равен бесконечности.

4. Za = 25 Ом. Реальный КСВ = 2.
На VD1 неизменные 5 В и Uпад = 5 В. На антенне 1/3 от входного напряжения (делитель Za/(R1 +Za) = 25/(50 + 25) =1/3), т.е. 3,33 В. На аноде VD2 конечно же 5В ВЧ, на катоде 3,33. Значит, на диоде есть ВЧ (5 — 3,33) = 1,66 В. Uотp = 1,66 В. По формуле КСВ = (Uпад+Uотр)/(Uпад-Uотр), измеренный КСВ = (5 + 1,66)/(5 — 1,66) = 2.

5. Zа = -j50 Ом. Конденсатор. Реальный КСВ равен бесконечности, поскольку нет активной мощности в нагрузке. Uпад = 5 В. На антенне-конденсаторе напряжение 7,06 В (простая задачка на построение векторной диаграммы цепи, решению которой тут не место, иначе мы никогда не выберемся из этого параграфа). На аноде VD2 конечно же 5 В (с фазой 0°) на катоде 7,06 В с фазой 45° (из того же ответа той же задачки). Напряжение на VD2 есть векторная разность, в данном случае равная = 5 В. Т.е. Uотр = 5 В и измеренный КСВ — бесконечность.

Читайте также:  Генератор тока бензиновый для сварки

Таким образом, при любой нагрузке, активной и реактивной, мостовой КСВ-метр измеряет правильно. Дополнительным полезным свойством такого КСВ-метра является то, что при любом значении Za передатчик “видит” почти чисто активную нагрузку (R2 + R3 включены постоянно), и КСВ по входу (не путать с измеряемым КСВ антенны!) не превышает 2.
Это важно при работе с генераторами, чувствительными к импедансу нагрузки.

В принципе, при хороших детекторных диодах мостовой КСВ-метр может работать при напряжениях на входе всего 1…2 В. Но при измерениях антенн надо иметь в виду, что принятый ими из эфира сигнал искажает показания прибора. А сигнал на длинных проволочных KB антеннах может достигать нескольких сотен милливольт. Поэтому желательно иметь сигнал на входе прибора 5. 15 В и по возможности не измерять НЧ антенны вечером и ночью, когда уровень принимаемых ими сигналов максимален.

Конструкция прибора в точности соответствует принципиальной схеме. КСВ-метр размещается в маленькой экранированной коробочке с двумя ВЧ разъемами, стоящими настолько близко друг к другу лишь бы между ними размещался R1. Резисторы R1-R3 должны быть безындуктивными, с мощностью 0,5. 1 Вт. Удобно сделать их параллельным включением двух по 100 Ом (при этом дополнительно снизится паразитная индуктивность). Все выводы деталей должны быть минимальной длинны, по возможности хорошо бы применить SMD компоненты.

Настройка прибора не требуется. При резисторах МЛТ, конденсаторах КМ и диодах 1N34 (все с выводами 2. 3 мм), в корпусе 25x25x25 мм КСВ метр, показанный на Рис.1 работает в полосе 1.5. 430 МГц. Fmin зависит лишь от С1-С4, при их емкости 0,047 мкФ можно работать даже на 136 КГц. Fmax зависит лишь от качества компонентов и монтажа, и при SMD компонентах и СВЧ диодах мостовые КСВ-метры по схеме Рис.1 выпускаются до 5 ГГц.

При измерениях КСВ относительно иного, чем 50 Ом сопротивления, соответственно меняются номиналы R1-R3».

Всё доходчиво, понятно, и добавить вроде бы нечего, если бы не маленькое «но».

Сигнал на входе прибора 5. 15 В — не является проблемой, если он поступает с выхода передатчика мощностью 0,2 — 2Вт. При более высоких амплитудах следует увеличивать мощность входящих в состав КСВ-метра резисторов, либо понижать сигнал посредством аттенюатора.
А что делать, если мы настраиваем приёмную антенну, а в хозяйстве не затерялось ничего, кроме ВЧ генератора с выходной амплитудой, не превышающей 1 В?

Ответ на этот насущный вопрос можно найти в научно-популярном издании «Радиоежегодник» 1983 года издания.

«Хорошо известно, что шкала простого ВЧ вольтметра, состоящего из полупроводникового диода и микроамперметра с добавочным резистором, существенно нелинейна при небольших (менее 2 В) уровнях ВЧ напряжения. Иными словами, такой ВЧ вольтметр нуждается в калибровке (причем на нескольких пределах измерения!), что далеко не всегда можно выполнить в радиолюбительских условиях. Здесь, однако, выручает одно обстоятельство.

Исследование простых ВЧ вольтметров, выполненных на германиевых диодах серий Д2, Д9, Д18, Д20, Д310, Д311, Д312, ГД402, ГД507 и ГД508 с различными буквенными индексами, показали, что некоторые характеристики подобных вольтметров очень близки друг к другу. Так, если в КСВ-метре используется микроамперметр с током полного отклонения 50. 200 мкА, а добавочный резистор R6 такой, что вместе с прибором Р образует вольтметр постоянного тока на напряжение 1. 2 В (некритично), то показания ВЧ вольтметра N на упомянутых диодах будут связаны с амплитудой высокочастотного напряжения Uвч простым соотношением:

Это дает возможность не калибровать шкалу КСВ-метра по образцовому прибору, а получить ее расчетным путем. Если пользоваться линейной шкалой микроамперметра, то формула для нахождения КСВ приобретает следующий вид:

Эффективность выпрямления ВЧ напряжения зависит от типа использованного в КСВ-метре диода. Для диодов типа Д2, Д9, Д310, Д312 частотная зависимость показаний вольтметра начинает проявляться уже на частотах 2. 5 МГц, а на частоте 30 МГц эффективность выпрямления падает примерно в два раза по сравнению с низкими частотами (

Заметно лучшие частотные характеристики имеют диоды Д18, Д20, Д311, ГД402 и ГД507 — у них частотная зависимость начинает проявляться на частотах 10. 20 МГц. Наилучшими для КСВ-метра являются диоды ГД508: у выполненных на их основе ВЧ вольтметров эффективность выпрямления остается постоянной вплоть до частоты 30 МГц.

Заметим, кстати, что в КСВ-метрах нельзя использовать кремниевые диоды, так как они практически на выпрямляют ВЧ напряжения при амплитудах сигнала меньше 0,6. 0,7 В. КСВ-метр с такими диодами будет заметно «улучшать» малые значения коэффициента стоячей волны.

Если КСВ-метр необходим от случая к случаю и не предполагается к частому использованию, то я не вижу особых поводов заморачиваться встраиванием внутрь прибора измерительной головки. Прекрасно можно обойтись без этого и произвести измерения, подключив к измерителю обычный аналоговый или цифровой мультиметр, по-любому имеющийся у каждого радиолюбителя.
А чтобы не тужиться при проведении расчётов (особенно в случаях низких амплитуд) приведу простой калькулятор, позволяющий перевести измеренные напряжения Uпад и Uотр в КСВ.

При вводе не ошибайтесь — амплитуда Uотр не может быть больше Uпад.

Источник

Простой КСВ метр (ВЧ мост)

Самодельный КСВ-метр

Кому утомительно читать мои лирические отступления и пояснение для новичков, могут переходить сразу к картинкам и схемам. В статье возможно содержатся ошибки и не точности, но таково мое понимание и я могу ошибаться.

После приобретения рации, и сляпанной наспех антенне, задумался, ну не может же у меня антенна сразу взять и настроится. Надо КСВ померить. А померить то нечем…
Когда-то давно, лет 10 назад, вещал я на 100 м в АМ с бандитами-хулиганами, радио-пиратами. )))

Жил я в частном доме, и «натянуть веревку» между 9-ти этажками не мог, из-за отсутствия таковых вообще. А что нужно для антенны на 100м диапазон? Правильно, подвес антенны на высоту 1/4L волны (25 м, слишком много…). Каких «веревок» я только не вешал, на соседские сараи, выше 5-7 метров я «прыгнуть» не мог, и антенна только грела землю и окружающее пространство. Передатчики были ламповые, и настройку антенны проводил по резонансу контуров на неонках в выходном каскаде, и что бы аноды не плавились, настраивал по току отдачи в антенну.

Пока не поставил хорошую мачту, и не установил Inverted-V, толку не было. В общем, есть такая поговорка «лучшая лампочка, это хорошо настроенная антенна».
К чему это я? А к тому, что без приборов, настроить передатчик и антенну достаточно трудно.

Так как приборов не было, а о приборах ИЧХ, АЧХ, ГКЧ, ГСС я только читал из умных книжек, и приобрести было тогда для меня их невозможно, приходилось делать пробники и тестеры самостоятельно. Вот об одном из них я и расскажу.

Читайте также:  Рассчитайте мощность электрического тока в электродвигателе используя показания приборов

Немного теории, как я ее понимаю, кратко на словах, без углубления.

Радиоволны от передатчика передаются по кабелю (фидер, не важно какой) в нагрузку. Нагрузка, это наша антенна. Если волновое сопротивление выхода передатчика, фидера и антенны равны, то КСВ=1, и вся энергия почти без потерь передается в антенну.

Теперь еще один немаловажный фактор, резонанс. В 2х словах, это совпадение величин индуктивного и емкостного сопротивления на определенной частоте. На частоте выше резонансной, индуктивное сопротивление растет, а емкостное падает и наоборот при понижении частоты. Работу на гармониках рассматривать не будем. Соответственно, на резонансной частоте мы получаем максимальное сопротивление антенны, максимальное излучение сигнала в пространство. И вот такая задача у нас стоит, что бы все эти сопротивления были согласованы и равны допустим 50 Ом.

Если мы согласовали передатчик и фидер (мы точно знаем, что выход рации 50 Ом и знаем, что кабель 50 Ом), то нужно подогнать сопротивление антенны к 50 Ом.
Что же происходит, когда КСВ у нас большое (допустим 4 или 5) и чем это чревато.

Волны от передатчика, проходят к нагрузке, но не поглощаются ей (нагрузкой=антенной), а отражаются и приходят обратно в передатчик. Так происходит обычно при обрыве в антенне или КЗ. Напряжение растет на выходе передатчика, и выходной каскад сгорает. На лампах плавятся аноды…

Краснение анодов ламп

Теперь как его измерить, этот КСВ.

Я знаю 2 принципиально разных способа.

1й способ.

Измерение с помощь трансформаторов тока непосредственно на фидере.

Схема КСВ метра

2й способ, измерение с помощью ВЧ моста, он предназначен для настройки на небольшой мощности 0,5-10Вт.

Приведу здесь оригинальную схему, а ниже дополню своими комментариями и ссылками на похожие схемы и реализации. Ну и мою реализацию этого прибора.

Статья по ксв метру

Описание измерителя КСВ

Как сделать КСВ метр

Проверка КСВ метра

Плата делалась методом вырезания пятачков.

Вид пайки деталей

Измерение на нагрузке

Прямая волна на нагрузке

Отраженная волна на нагрузке

Измерение на антенне

Прямая волна на антенне

Отраженка в антенне

Начну из далека, в книжке «Юный радиолюбитель» Борисов В. Г. публиковалась схема RLC измерителя, с помощью этого примитивного прибора на НЧ можно было с высокой точностью измерять резисторы, катушки и конденсаторы. Принцип его в том, что, заменив одно плечо моста на неизвестное сопротивление (активное или реактивное), можно вычислить неизвестное сопротивление.

На рисунке ниже видно, что R1 и R2 образуют делитель напряжения. R3 и R4 образуют 2й делитель напряжения. И между точками A и B напряжение будет равно нулю! Если R4 заменить на неизвестное сопротивление не равно 50 Ом, то напряжения на делителе изменится, и между точками AB возникнет разность потенциалов, и что бы вернуть баланс, нужно изменить R3, чтобы оно стало равным R4, и тогда между A и B напряжение снова станет равно нулю. Измерив R3, мы узнаем, чему равно R4! Если изменять R4, то, когда оно станет равным R3, в точках АВ тоже станет ноль.

ВЧ мост схема

Вы уже догадались, что если включить вместо R4 антенну, а вместо батареи включить передатчик, то можно либо измерить ее сопротивление, либо подстроить антенну под нужное сопротивление, для согласования с фидером.

Оказывается, точность у этого моста обалденная, мне удалось добиться точности балансировки 0,01V на постоянном токе! На ВЧ влияют емкости и внешние наводки.
Теперь о том, какие резисторы выбрать и как подогнать мост, если резисторы с разбросом.

Резисторы моста МЛТ-2, номиналом 100 Ом, включенные по 2 штуки в параллель. Что бы увеличить сопротивление резистора (а они у меня получились, судя по омметру 48-49 Ом), нужно слегка, без фанатизма поцарапать его надфилем, измерить, еще поцарапать, при необходимости повторить.

Подгонка в 50 ом

Повторюсь, настраивал на постоянном токе, с точностью до 0,01V по мультиметру.

Ну а вот пример на УКВ и СВЧ диапазон (сделано не мной), попробую сделать что то типа такого, а-ля антеноскоп.

Вид рефлектометра

Всем 73! Хорошей связи без помех!

Мостовой КСВ-метр v2.0

КСВ метр внешний вид

В борьбе за точность измерений, была собрана 2я версия КСВ-метра на SMD 1206, 2х100 Ом в плечо.

Все равно был небольшой дисбаланс, отсоединив разъем на выходе и запаяв нагрузочный резистор на плату, дисбаланс пропал. Вывод, разъемы гамно, имеют большую емкость внутреннюю, которая разбалансирует мост на ВЧ.

Измерительная головка выведена обычным проводом, переменный резистор включен потенциометром.

При мощности в 8 Вт резисторы могут взорваться через 20-30 секунд, мост рассчитан на 0,5Вт.
Измерял быстро )))

Внутренности УКВ ксв метра

BillCipher. Томск, Россия Поделитесь записью в своих социальных сетях!

Источник



Тема: Измеритель КСВ, какой правильный/неправильный трансформатор-датчик?

Опции темы
  • Версия для печати
  • Версия для печати всех страниц
  • Подписаться на эту тему…
  • Поиск по теме

    Измеритель КСВ, какой правильный/неправильный трансформатор-датчик?

    Решил собрать ПРАВИЛЬНЫЙ КСВ метр, по всеми известной схеме, где все правильно описано и просчитать всё можно. Вот эта статья и схема

    Автор рекомендует свивать вторичную обмотку 4 скрутки на 1 см — и как быть с расчётами . не сходится как описано.
    Вопрос о вторичной обмотке трансформатора КСВ метра — ( ту, что мотается в два провода). При расчётах по калькулятору, что в этой теме, я просчитал витки вторички, и требуемую — расчетную индуктивность одно катушки — должно быть — что б правильно — 45 мкГн. а двух катушек соответственно как по формуле = 90 мкГн.
    Намотал 16 витков (по моим расчётам — 50 мкГн — одна полуобмотка, а две — должны 100 мкГн, а нужно 90 — то есть, всё как бы правильно), и по совету автора — для большей равномерности показаний КСВ метра, — свитыми между собой, замерил прибором — мостом Е7 — 11 — одну — из двух обмоток, все верно 50 мкГн, дай думаю, измерю всю катушку, вот тут и сюрприз получилось — 230 мкГн, -добавилась ёмкость свитых полуобмоток, и увеличила в 4.7 — раза индуктивность общую, вместо расчётных 90 мкГн.
    Как теперь понимать автора статьи и рекомендации, по свиванию уже просчитанных витков полуобмоток, но не учтено, что в итоге — получится такой результат.
    Кто даст правильное решение, по этой статье и по данному примеру, как быть? свить и уменьшить витки — чтоб получить 90 мкГн, или не свивать провода и по калькулятору автора. Как быть с рекомендацией свивать (4 свивки на 1 см )но нет ответа там, что получим — в несколько раз завышенную расчётную индуктивность. Вопросы — прошу обсудить.

    мне какжется, чтобы сделать правильный ксв метр, прийдется использовать логарифмический детектор.
    И делать математическую коррекцию нелинейности сенсора.

    Правда цена получается кусючей: http://www.kosmodrom.com.ua/prodlist. EA%EB%E0%E4%F3
    2 шт — это уже 446.88 грн ($17).

    Вот нашел интересную статью по этому вопросу:
    http://dl2kq.de/ant/3-105.htm

    Добавлено через 16 минут(ы) :

    Сообщение от Простор

    Сообщение от Простор

    n 2 ), количество скруток на сантиметр тут не при чём. Полученные 50мкГн*4 это приблизительно и есть 230мкГн. Тут надо ещё учитывать погрешность измерителя и то, как себя ведёт этот конкретный сердечник кольца при частоте и уровне измерительного сигнала Е7-11 — могут быть всякие «сюрпризы» с показаниями.
    PS
    Пока печатал, уже ответили

    МиниатюрыМиниатюры

    Fmin= MHz
    UDmax= V
    R1=R2=
    P= W
    Zk=
    C1= pF
    ALopt = µH
    AL = µH
    Lopt = µH
    L = µH
    w = 2x
    P(R1,R2) = W
    C2 = pF

    По этому калькулятору, что в обсуждаемом вопросе, третий пункт снизу и есть расчётные витки вторички, ( умноженные на 2 ), и должно получится 90 мкГн, как рекомендует автор, для достоверных показаний в широком диапазоне частот 4 пункт снизу — полученная расчетная индуктивность моей — одной катушки т.е как и оптимальная (45 мкГн) — 5 пункт L опт. постоянная величина у этого калькулятора и равен 45 мкГн, что я и получил, но дальше не сходится.
    Если я понятно изложил, то получив правильный результат по калькулятору — мы не получим правильную индуктивность (90 мкГн ) — умножив витки на 2.

    Читайте также:  Ток стартера ваз 21214

    По ответам — какой сделать измеритель — спасибо, у меня уже запрограммировано, что в моём варианте в одном корпусе их будет два, как этот вариант — так и мостовой. Места хватает и разъёмом то же.
    Вопросы изложил, как быть с данным калькулятором, ведь у всех, кто повторил эти расчёты — не сойдётся правильная последняя полученная индуктивность — .. . И как выйти из этого положения?
    Все же как быть с витками и рекомендованной индуктивностью — . На вопрос в начале — никто не ответил.
    Если дело не в свивании витков, то, тогда не верный калькулятор, или я — ошибаюсь, — поправьте. ? Или автор получает — нужные 90 мкГн не ясно как.

    Схем измерителей КСВ на ферритовом кольце довольно много, теория хорошо изложена в статье UT1MA, но ни в одной статье я не нашёл расчёта как количества витков на кольце, так и чёткого ответа какое ферритовое кольцо надо применить. В этой статье попробую объяснить работу измерителя, особенно трансформатора тока, и приведу его расчёт.
    Как известно, чтоб однозначно определить КСВ в фидере хватает знать волновое сопротивление фидера и комплексное сопротивление в любой точке его разреза. Волновое сопротивление обычно нам известно, а определить комплексное сопротивление можно путём измерения в одной точке разреза фидера напряжения, тока и угла между ними. Напряжение измерить просто, ток можно измерить с помощью токового трансформатора, на выходе которого получаем напряжение, которое зависит от тока.
    В этой схеме измерителя нет ничего нового, но чтоб он показывал правду в широком диапазоне частот, на некоторые детали обратим особое внимание.

    Ток измеряется токовым трансформатором. Для простоты будем считать, что потерь в ферритовом кольце нет. Токовый трансформатор можно рассматривать как трансформатор напряжения с некоторыми нюансами. Первичной обмоткой является провод, просунутый через отверстие кольца. Вторичная обмотка нагружена на сопротивление R’ = R1 + R2. Трансформированное сопротивление на первичную обмотку будет

    где fmin – минимальная частота измерителя КСВ. Если минимальная частота 1,8 МГц, индуктивность обмотки должна быть около 90µH. Только в таком случае получим хорошие амплитудные и фазовые характеристики трансформатора тока в наибольшем диапазоне нужных частот.
    Итак, мы уже однозначно определили индуктивность обмотки и сопротивление её нагрузки R’. Осталось разобраться какое кольцо применить и сколько надо намотать витков вторичной обмотки. Напряжение на нагрузочном резисторе, как видно из ранее приведённой формулы, обратно пропорционально количеству витков. Из этого следует, что витков должно быть немного, чтоб иметь достаточно большое напряжение для обеспечения меньшей нелинейности при небольших КСВ из-за прямого напряжения диодов. Но это напряжение ограничивается максимальным обратным напряжением диодов и мощностью нагрузочных резисторов. Если мощность резисторов в принципе не проблема, с обратным напряжением диодов надо считаться. При превышении этого напряжения через них начинает течь значительный обратный ток, который искажает показания измерительного прибора. Поэтому напряжение вторичной обмотки при максимальной мощности передатчика не должно превышать этого значения. Приблизительно определить оптимальное количество витков вторичной обмотки можно с помощью формулы

    Имея нужную индуктивность и число витков, можно рассчитать индуктивность одного витка АL трансформатора, который будем использовать в качестве трансформатора тока.

    Чтоб схема была сбалансирована, напряжение, получаемое с делителя С1 и С2, должна быть равно U’/2. Фаза напряжений на крайних выводах вторичной обмотки будет отличатся на 180°. Поэтому при КСВ=1 суммарное напряжение относительно земли при их сложении в одном плече будет в два раза больше, в другом равно нулю. Если сопротивление нагрузки не такое, на каком было сбалансирован измеритель КСВ, соотношение напряжение/ток и (или) фаза между напряжением и током не будет совпадать, баланса схемы не получим, что покажет измеритель. Сбалансировать измеритель в принципе можно на любую, но только активную нагрузку. Так как коррекции фазы в измерителе не предусмотрено, сбалансировать его при комплексной нагрузке не получится.
    Напряжение в измеряемой точке делится делителем С1 и С2. Чтоб он не вносил значительное реактивное сопротивление, общая его ёмкость должна быть как можно меньше, но, с другой стороны, на самой низкой частоте его реактивное сопротивление должно быть небольшое, чтоб не было значительных фазовых искажений. Для измерителя на КВ диапазоны ёмкость конденсатора С1 целесообразно брать 5-10pF, он должен быть рассчитан на напряжение не менее 250V. Для большей точности прибора его можно сделать из двух конденсаторов, один из которых подключается к входному разьёму, другой к выходному, как показано статье UT1MA. Построечный конденсатор C3 предназначен для балансировки измерителя. На нём, как и на С2, напряжение небольшое, годится керамический конденсатор с пределами регулировки 8-30pF. Можно построечный конденсатор применить и с бОльшим диапазоном регулировки, тогда не потребуется подбор конденсатора С2, что иногда случается. При выбранном С1 можно рассчитать С2 по формуле

    В этой формуле не учитывается монтажная ёмкость между обмотками трансформатора тока, а также С3, но обычно точности расчёта хватает. Если при балансировке не хватает предела регулировки ёмкости С3, меняем С2 с большей или меньшей ёмкостью.
    При использовании однотактных детекторов параллельно С2 подключается резистор около 100kΩ. Он может значительно сдвинуть фазу на низкочастотном диапазоне, где реактивное сопротивление делителя максимальное, что может потребовать коррекции на НЧ диапазонах. Поэтому желательно детекторы делать с удвоением напряжения, такая схема не требует такого резистора. Экранировать первичную обмотку от вторичной не надо, ёмкость между первичной и вторичной обмотками входит в ёмкость С1. Наоборот, чем больше эта ёмкость, тем лучше, так как напряжение надо измерять в той же точке, где измеряем ток.
    Монтаж датчика симметричный, надо стараться его сделать компактным. Выводы всех деталей ВЧ части должны быть предельно короткие. Расстояние между разъёмами минимальное. Провод, соединяющий разъёмы и проходящий сквозь трансформатор тока, монтажный с изоляцией, толщина его подбирается так, чтоб кольцо с обмоткой на нём двигалось с трудом. В случае применения одного конденсатора С1, передатчик к измерителю КСВ следует подключать со стороны ёмкостного делителя, тогда измеритель не будет «видеть» вносимое им реактивное сопротивление делителя напряжения. Оно большое, но на высокочастотных диапазонах заметно. Схему самого измерительного прибора не рисовал, она стандартная.
    Не делайте расчёты в ручную, доверьтесь считалке ниже. Это упростит расчёт. ALopt должен не сильно отличатся от AL. Считалка правее поможет рассчитать AL конкретного ферритового кольца. Данные надо ввести в розовые ячейки, при нажатии серой кнопки мы видим результат расчёта. Для примера введён реальный расчёт измерителя КСВ для мощности ТХ 500W и волнового сопротивления кабеля Zk=50Ω. Применены диоды Д311, у которых максимальное обратное напряжение 30V.

    Источник