Меню

Магнитный момент плоской рамки с током

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Kvant. Магнитный момент тока

Кикоин А.К. Магнитный момент тока //Квант. — 1986. — № 3. — С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I, если он помещен в однородное магнитное поле с индукцией \(

\vec B\), действует сила \(

\vec F\), равная по модулю

F = BIl \sin \alpha\) ,

где α — угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник — это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее — на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b, по которой в указанном стрелками направлении течет ток I.

Рамка помещена в однородное магнитное поле с индукцией \(

\vec B\) так, что в начальный момент вектор \(

\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(

\frac<2>\) — плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab, или, поскольку произведение ab равно площади S рамки,

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу — в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS — это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м 2 .

Читайте также:  Ученик проводил опыты с двумя разными резисторами измеряя значения силы тока проходящего через них

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,— нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент — одно из самых важных понятий в физике.

Источник

Рамка с током в магнитном поле. Магнитный момент

date image2015-04-20
views image848

facebook icon vkontakte icon twitter icon odnoklasniki icon

Рассмотрим плоский контур в однородном магнитном поле. В принципе любой неплоский контур можно разбить на плоские контуры. Найдем направление сил, действующих на каждую из сторон рамки:

(используя правило левой руки или правило перемножения векторов)

Составляющие 1 и 2 будут вызывать вращение рамки. – нормаль к плоскости рамки. Вращающий момент будет стремиться повернуть рамку перпендикулярно магнитным силовым линиям. Если она так остановится, то далее вращаться не будет.

Найдем величину этого вращающего магнитного момента. Составляющие и растягивают рамку, а и — вращают ее.

Момент пары сил:

По правилам механики момент силы направлен по оси вращения (в данном случае — вверх). Последнее равенство можно переписать в виде векторного произведения, если обозначить

Величина называется магнитным моментом рамки с током, то есть, на рамку (контур) с током в магнитном поле действует вращающей механический момент, зависящий от величины тока I , площади рамки, ориентации рамки и от величины магнитного поля . Таким образом, магнитное поле стремится установить рамку с током перпендикулярно магнитным силовым линиям, то есть так, чтобы вектор был направлен вдоль магнитных силовых линий.

Читайте также:  Ток заряда автомобильных аккумуляторных батарей

Источник

Физика

Рамка с током (рис. 9.16) обладает магнитным моментом .Рис. 9.16

Модуль магнитного момента контура с током равен произведению силы тока в контуре на площадь, ограниченную этим контуром, —

где I — сила тока в контуре; S — площадь, ограниченная этим контуром.

Направление вектора магнитного момента P → m связано с направлением тока правилом правого винта : поступательное движение правого винта совпадает с направлением магнитного момента при вращении рукоятки винта по направлению тока в контуре.

В Международной системе единиц магнитный момент контура с током измеряется в амперах, умноженных на квадратные метры (1 А ⋅ м 2 ).

Магнитное поле оказывает ориентирующее действие на помещенную в него рамку с током, т.е. в магнитном поле на рамку с током действует механический вращающий момент .

Величина механического вращающего момента , действующего на рамку с током, помещенную в магнитное поле, равна произведению

где P m — модуль магнитного момента рамки с током, P m = IS ; I — сила тока в рамке; S — площадь рамки; B — модуль вектора магнитной индукции поля; α — угол между векторами P → m и B → .

Направление механического вращающего момента M → определяется правилом правого винта.

В Международной системе единиц механический вращающий момент, действующий на контур с током в магнитном поле, измеряется в ньютонах, умноженных на метр, или в джоулях (1 Н ⋅ м = 1 Дж).

Величина механического вращающего момента зависит от взаимной ориентации рамки и поля, т.е. от взаимного расположения в пространстве векторов P → m и B → :

  • если плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента взаимно параллельны ( P → m || B → ), то механический вращающий момент на рамку с током не действует :
  • если плоскость рамки параллельна полю, т.е. векторы магнитной индукции и магнитного момента взаимно-перпендикулярны ( P → m ⊥ B → ), то механический вращающий момент, действующий на рамку с током, имеет максимальное значение :

где B — модуль вектора магнитной индукции поля; I — сила тока в рамке; S — площадь рамки.

Равновесие рамки с током в магнитном поле имеет место в том случае, когда плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента параллельны ( P → m | | B → ). В этом случае механический вращающий момент на рамку с током не действует: M = 0.

Равновесие рамки с током в магнитном поле является:

  • устойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен нулю (рис. 9.17): α = 0;Рис. 9.17
  • неустойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен 180° (рис. 9.18): α = 180°.Рис. 9.18

Пример 9. Замкнутый проводящий контур имеет форму квадрата. По контуру протекает электрический ток. Контур растягивают таким образом, что сторона квадрата увеличивается в 1,50 раза, а сила тока в нем остается неизменной. Во сколько раз возрастает при этом числовое значение магнитного момента контура?

Читайте также:  Как изменилась сила тока в цепи если увеличилась концентрация в 4 раза а скорость

Решение. Величина магнитного момента контура с током определяется произведением силы тока и площади, ограниченной этим контуром:

  • в первом случае (до деформации контура)

где I — сила тока в контуре; S 1 — площадь квадрата, ограниченная контуром, до растяжения, S 1 = a 2 ; a — сторона квадрата до деформации контура;

  • во втором случае (после деформации контура)

где S 2 — площадь, ограниченная контуром, после растяжения, S 2 = b 2 ; b — сторона квадрата после деформации контура.

Искомой величиной является отношение

P 2 P 1 = I S 2 I S 1 = S 2 S 1 = b 2 a 2 = ( b a ) 2 .

По условию задачи

следовательно, записанное отношение составляет

P 2 P 1 = ( 1,5 a a ) 2 = 2,25 .

Величина магнитного момента контура с током при заданной деформации возрастет в 2,25 раза.

Источник



Магнитный момент тока. Рамка с током.

Магнитный момент тока это произведение площади контура, в котором он протекает на силу тока в нем. Магнитный момент направлен перпендикулярно плоскости контура. Это направление можно определить с помощью правила буравчика. Если буравчик вращать по направлению движения тока в контуре, то его поступательное движение укажет направление магнитного момента.

Для наглядности рассмотрим действие магнитного момента тока на примере. Возьмем прямоугольную рамку с током. Поместим ее в постоянное магнитное поле, так чтобы плоскость рамки была параллельна вектору магнитной индукции.

Как известно на проводник, с током помещённый в магнитное поле действует сила Лоренца. Направление, которой можно определить с помощью правила левой руки. Рассматривая действие силы Лоренца на стороны рамки в отдельности можно прийти к выводу, что на них будут действовать силы равные по величине, но противоположные по знаку.

Поскольку эти силы зависят от длинны проводника силы тока в нем и угла между направлением тока и вектором магнитной индукции. А ток в этом контуре протекает один и тот же. Длинна сторон рамки одинакова. И стороны рамки находятся параллельно магнитному полю. Но ток движется в противоположные стороны. Значит и силы будут направлены противоположно.

Две другие стороны рамки не будут взаимодействовать с полем поскольку ток в них течет параллельно силовым линиям поля. Следовательно, исходя из закона Лоренца сила, действующая на них, будет равна нулю.

Далее если мысленно провести вдоль рамки вертикальную осевую линию. То силы, действующие на ее края, будут стремиться ее развернуть. До тех пор пока рамка не примет такое положение, при котором все силы не уравновесятся. При этом рамка повернется своей плоскостью перпендикулярно силовым линия поля.

Таким образом, вращающий момент можно представить в таком виде

где B вектор магнитной индукции
I сила тока в контуре
S площадь рамки с током
sinb угол между вектором магнитной индукции и плоскостью рамки

Источник