Меню

Методом эквивалентных преобразований определить все токи в схеме

Рекомендации по решению нетрадиционных задач на расчет электрических цепей постоянного тока

Разделы: Физика

Решение задач — неотъемлемая часть обучения физике, поскольку в процессе решения задач происходит формирование и обогащение физических понятий, развивается физическое мышление учащихся и совершенствуется их навыки применения знаний на практике.

В ходе решения задач могут быть поставлены и успешно реализованы следующие дидактические цели:

  • Выдвижение проблемы и создание проблемной ситуации;
  • Обобщение новых сведений;
  • Формирование практических умений и навыков;
  • Проверка глубины и прочности знаний;
  • Закрепление, обобщение и повторение материала;
  • Реализация принципа политехнизма;
  • Развитие творческих способностей учащихся.

Наряду с этим при решении задач у школьников воспитываются трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели. Для реализации перечисленных целей особенно удобно использовать нетрадиционные задачи.

§1. Задачи по расчету электрических цепей постоянного тока

По школьной программе на рассмотрение данной темы очень мало отводится времени, поэтому учащиеся более или менее успешно овладевают методами решения задач данного типа. Но часто такие типы задач встречаются олимпиадных заданиях, но базируются они на школьном курсе.

К таким, нестандартным задачам по расчету электрических цепей постоянного тока можно отнести задачи, схемы которых:

1) содержат большое число элементов – резисторов или конденсаторов;

3) состоят из сложных смешанных соединений элементов.

В общем случае всякую цепь можно рассчитать, используя законы Кирхгофа. Однако эти законы не входят в школьную программу. К тому же, правильно решить систему из большого числа уравнений со многими неизвестными под силу не многим учащимся и этот путь не является лучшим способом тратить время. Поэтому нужно уметь пользоваться методами, позволяющими быстро найти сопротивления и емкости контуров.

§2. Метод эквивалентных схем

Метод эквивалентных схем заключается в том, что исходную схему надо представить в виде последовательных участков, на каждом из которых соединение элементов схемы либо последовательно, либо параллельно. Для такого представления схему необходимо упростить. Под упрощением схемы будем понимать соединение или разъединение каких-либо узлов схемы, удаление или добавление резисторов, конденсаторов, добиваясь того, чтобы новая схема из последовательно и параллельно соединенных элементов была эквивалентна исходной.

Эквивалентная схема – это такая схема, что при подаче одинаковых напряжений на исходную и преобразованную схемы, ток в обеих цепях будет одинаков на соответствующих участках. В этом случае все расчеты производятся с преобразованной схемой.

Чтобы начертить эквивалентную схему для цепи со сложным смешанным соединением резисторов можно воспользоваться несколькими приемами. Мы ограничимся рассмотрением в подробностях лишь одного из них – способа эквипотенциальных узлов.

Этот способ заключается в том, что в симметричных схемах отыскиваются точки с равными потенциалами. Эти узлы соединяются между собой, причем, если между этими точками был включен какой-то участок схемы, то его отбрасывают, так как из-за равенства потенциалов на концах ток по нему не течет и этот участок никак не влияет на общее сопротивление схемы.

Таким образом, замена нескольких узлов равных потенциалов приводит к более простой эквивалентной схеме. Но иногда бывает целесообразнее обратная замена одного узла

несколькими узлами с равными потенциалами, что не нарушает электрических условий в остальной части.

Рассмотрим примеры решения задач эти методом.

Рассчитать сопротивление между точками А и В данного участка цепи. Все резисторы одинаковы и их сопротивления равны r.

В силу симметричности ветвей цепи точки С И Д являются эквипотенциальными. Поэтому резистор между ними мы можем исключить. Эквипотенциальные точки С и Д соединяем в один узел. Получаем очень простую эквивалентную схему:

Сопротивление которой равно:

В точках F и F` потенциалы равны, значит сопротивление между ними можно отбросить. Эквивалентная схема выглядит так:

Сопротивления участков DNB;F`C`D`; D`, N`, B`; FCD равны между собой и равны R1:

С учетом этого получается новая эквивалентная схема:

Ее сопротивление и сопротивление исходной цепи RАВ равно:

Точки С и Д имеют равные потенциалы. Исключением сопротивление между ними. Получаем эквивалентную схему:

Искомое сопротивление RАВ равно:

Как видно из схемы узлы 1,2,3 имеют равные потенциалы. Соединим их в узел 1. Узлы 4,5,6 имеют тоже равные потенциалы- соединим их в узел 2. Получим такую эквивалентную схему:

Сопротивление на участке А-1, R 1-равно сопротивлению на участке 2-В,R3 и равно:

Сопротивление на участке 1-2 равно: R2=r/6.

Теперь получается эквивалентная схема:

Общее сопротивление RАВ равно:

RАВ= R1+ R2+ R3=(5/6)*r.

Точки C и F-эквивалентные. Соединим их в один узел. Тогда эквивалентная схема будет иметь следующий вид:

Сопротивление на участке АС:

Сопротивление на участке FN:

Сопротивление на участке DB:

Получается эквивалентная схема:

Искомое общее сопротивление равно:

Заменим общий узел О тремя узлами с равными потенциалами О, О1 , О2. Получим эквивалентную систему:

Сопротивление на участке ABCD:

Сопротивление на участке A`B`C`D`:

Сопротивление на участке ACВ

Получаем эквивалентную схему:

Искомое общее сопротивление цепи RAB равно:

“Разделим” узел О на два эквипотенциальных угла О1 и О2. Теперь схему можно представить, как параллельные соединение двух одинаковых цепей. Поэтому достаточно подробно рассмотреть одну из них:

Сопротивление этой схемы R1 равно:

Тогда сопротивление всей цепи будет равно:

Узлы 1 и 2 – эквипотенциальные, поэтому соединим их в один узел I. Узлы 3 и 4 также эквипотенциальные – соединимих в другой узел II. Эквивалентная схема имеет вид:

Сопротивление на участке A- I равно сопротивлению на участке B- II и равно:

Сопротивление участка I-5-6- II равно:

Cопротивление участка I- II равно:

Получаем окончательную эквивалентную схему:

Искомое общее сопротивление цепи RAB=(7/12)*r.

В ветви ОС заменим сопротивление на два параллельно соединенных сопротивления по 2r. Теперь узел С можно разделить на 2 эквипотенциальных узла С1 и С2. Эквивалентная схема в этом случае выглядит так:

Сопротивление на участках ОСIB и DCIIB одинаковы и равны, как легко подсчитать 2r. Опять чертим соответствующую эквивалентную схему:

Сопротивление на участке AOB равно сопротивлению на участке ADB и равно (7/4)*r. Таким образом получаем окончательную эквивалентную схему из трех параллельно соединенных сопротивлений:

Ее общее сопротивление равно RAB= (7/15)*r

З а д а ч а № 10

Точки СОD имеют равные потенциалы – соединим их в один узел О I .Эквивалентная схема изображена на рисунке :

Сопротивление на участке А О I равно . На участке О I В сопротивление равно .Получаем совсем простую эквивалентную схему:

ЕЕ сопротивление равно искомому общему сопротивлению

Задачи № 11 и № 12 решаются несколько иным способом, чем предыдущие. В задаче №11 для ее решения используется особое свойство бесконечных цепей, а в задаче № 12 применяется способ упрощения цепи.

Выделим в этой цепи бесконечно повторяющееся звено, оно состоит в данном случае из трех первых сопротивлений. Если мы отбросим это звено, то полное сопротивление бесконечной цепи R не измениться от этого , так как получится точно такая же бесконечная цепь. Так же ничего не измениться, если мы выделенное звено подключим обратно к бесконечному сопротивлению R, но при этом следует обратить внимание , что часть звена и бесконечная цепь сопротивлением R соединены параллельно. Таким образом получаем эквивалентную схему :

Читайте также:  Что служит примером магнитного действия тока

Решая систему этих уравнений, получаем:

§3. Обучение решению задач по расчету электрических цепей способом эквипотенциальных узлов

Задача – это проблема, для разрешения которой ученику потребуются логические рассуждения и выводы. Строящиеся на основе законов и методов физики. Таким образом, с помощью задач происходит активизация целенаправленного мышления учащихся.

В то же время. Теоретические знания можно считать усвоенными только тогда, когда они удачно применяются на практике. Задачи по физике описывают часто встречающиеся в жизни и на производстве проблемы, которые могут быть решены с помощью законов физики и, если ученик успешно решает задачи, то можно сказать, что он хорошо знает физику.

Для того, чтобы ученики успешно решали задачи, недостаточно иметь набор методов и способов решения задач, необходимо еще специально учить школьников применению этих способов.

Рассмотрим план решения задач по расчету электрических цепей постоянного тока методом эквипотенциальных узлов.

  1. Чтение условия.
  2. Краткая запись условия.
  3. Перевод в единицы СИ.
  4. Анализ схемы:
    1. установить, является ли схема симметричной;
    2. установить точки равного потенциала;
    3. выбрать, что целесообразнее сделать – соединить точки равных потенциалов или же, наоборот, разделить одну точку на несколько точек равных потенциалов;
    4. начертить эквивалентную схему;
    5. найти участки только с последовательным или только с параллельным соединением и рассчитать общее сопротивление на каждом участке по законам последовательного и параллельного соединения;
    6. начертить эквивалентную схему, заменяя участки соответствующими им расчетными сопротивлениями;
    7. пункты 5 и 6 повторять до тех пор, пока не останется одно сопротивление, величина которого и будет решением задачи.
  5. Анализ реальности ответа.

Подробнее об анализе схемы

а) установить, является ли схема симметричной.

Определение. Схема симметрична, если одна ее половина является зеркальным отражением другой. Причем симметрия должна быть не только геометрической, но должны быть симметричны и численные значения сопротивлений или конденсаторов.

Схема симметричная, так как ветви АСВ и АДВ симметричны геометрически и отношение сопротивления на одном участке АС:АД=1:1 такое же, как и на другом участке СД:ДВ=1:1.

Схема симметричная, так как отношение сопротивлений на участке АС:АД=1:1 такое же, как и на другом участке СВ:ДВ=3:3=1:1

Схема не симметрична, так как отношения сопротивлений численно

не симметричны -1:2 и 1:1.

б) установить точки равных потенциалов.

Из соображений симметрии делаем вывод, что в симметричных точках потенциалы равны. В данном случае симметричными точками являются точки С и Д. Таким образом, точки С и Д – эквипотенциальные точки.

в) выбрать, что целесообразно сделать – соединить точки равных потенциалов или же, наоборот, разделить одну точку на несколько точек равных потенциалов.

Мы видим в этом примере, что между точками равных потенциалов С и Д включено сопротивление, по которому ток не будет течь. Следовательно, мы можем отбросить это сопротивление, а точки С и Д соединить в один узел.

г) начертить эквивалентную схему.

Чертим эквивалентную схему. При этом получаем схему с соединенными в одну точку точками С и Д.

д) найти участки только с последовательным или только с параллельным соединением и рассчитать общее сопротивление на каждом таком участке по законам последовательного и параллельного соединения.

Из полученной эквивалентной схемы видно, что на участке АС мы имеем два параллельно соединенных резистора. Их общее сопротивление находится по закону параллельного соединения:

Таким образом 1/RAC=1/r+1/r=2/r,откуда RAC= r/2.

На участке СВ картина аналогичная:

1/RCB= 1/r+1/r =2/r, откуда RCB=r/2.

е)начертить эквивалентную схему, заменяя участки соответствующими им расчетными сопротивлениями.

Чертим эквивалентную схему подставляя в нее рассчитанные сопротивления участков RAC и RCB:

ж)пункты д) и е) повторять до тех пор, пока останется одно сопротивление, величина которого и будет решением задачи.

Повторяем пункт д): на участке АВ имеем два последовательно соединенных сопротивления. Их общее сопротивление находим по закону последовательного соединения:

Rобщ= R1+R2+R3+… то есть, RAB=RAC+RCB = r/2+r/2 =2r/2 = r.

Повторяем пункт е): чертим эквивалентную схему:

Мы получили схему с одним сопротивлением, величина которого равна сопротивлению исходной схемы. Таким образом, мы получили ответ RAB = r.

Далее, для проверки усвоения данного материала можно учащимся предложить задания для самостоятельной работы, взятые из дидактического материала. (см. приложение)

  • Балаш. В.А. задачи по физике и методы их решения. — М: Просвещение,1983.
  • Лукашик В.И. Физическая олимпиада.- М: Просвещение, 2007
  • Усова А.В., Бобров А.А. Формирование учебных умений и навыков учащихся на уроках физики.- М: Просвещение,1988
  • Хацет А. Методы расчета эквивалентных схем //Квант.
  • Чертов А. Г. Задачник по физике. – М.: Высшая школа,1983
  • Зиятдинов Ш.Г., Соловьянюк С.Г. (методические рекомендации) г. Бирск,1994г
  • Марон А.Е., Марон Е.А. Физика. Дидактические материалы. Москва, “Дрофа”, 2004г
  • Источник

    ЭКВИВАЛЕНТНЫЕ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

    Сущность эквивалентных преобразований заключается в том, что часть электрической цепи заменяется более простой схемой: либо с меньшим количеством ветвей и сопротивлений, либо с меньшим числом узлов или контуров. Преобразование считается эквивалентным, если токи и напряжения непреобразованной части схемы остаются прежними, то есть одинаковыми в исходной и преобразованной схемах. Сами по себе эквивалентные преобразования не являются методом расчёта, однако способствуют упрощению расчётов.

    Часто используются следующие эквивалентные преобразования:

    1. Замена последовательного соединения сопротивлений r1, r2, … rn одним эквивалентным rЭ = .

    2. Замена параллельного соединения пассивных ветвей с проводимостями g1, g2, … gn одной эквивалентной gЭ = .

    3. Замена смешанного соеди-нения сопротивлений рис. 1.35,а одним эквивалентным (рис. 1.35,б), где rЭ = r1+ , что следует из поэтапного применения п.2 и п.1 настоящих рекомендаций.

    4. Эквивалентные преобразования пассивных трёхполюсников – треугольника (рис. 1.36,а) и звезды (рис.1.36,б). При этом сопротивления эквивалентного треугольника

    а сопротивления эквивалентной звезды r1 = , r2 = , r3 = ,

    где rD = r12 + r23 +r31 – сумма сопротивлений ветвей треугольника.

    5. При дальнейшем изучении курса ТОЭ будут представлены формулы эквивалентных замен пассивных четырёхполюсников Т- и П-схемами, замен цепей с распределёнными параметрами эквивалентными четырёхполюсни-ками, устранение индуктивной связи в цепях и др.

    Особенно удобно пользоваться методом эквивалентных преобразований при расчёте входных и взаимных сопротивлений или входных и взаимных проводимостей схем, коэффициентов передачи напряжений и токов, поступающих на вход схемы при передаче сигнала в нагрузку, когда на схему воздействует только один источник энергии.

    ЗАДАЧА 1.35. Рассчитать токи мостовой схемы задачи 1.15 (рис. 1.23), используя эквивалентные преобразования.

    Решение

    Проверяем условие равновесия моста:

    Так как r1×r4¹r2×r3, то мост неуравновешен, все его токи отличны от нуля.

    Заменим треугольник сопротивлений r2r4r5 эквивалентным соединением в звезду, получим схему рис. 1.37, для которой

    ra = = = 9 Ом,

    rb = = = 12 Ом,

    rc = = = 12 Ом.

    Входное сопротивление схемы по отношению к зажимам источника ЭДС

    Входной ток мостовой схемы

    I = = = 9,12 А.

    Токи параллельных ветвей схемы рис. 1.37

    I1 = I× = 9,12× = 6,23 А,

    I2 = I× = 9,12× = 2,89 А.

    Напряжение U43 = I1×rс + I×rb = 6,23×12 + 9,12×12 = 184,2 B.

    Возвращаемся к исходной схеме и рассчитываем токи треугольника сопротивлений: I2 = = = 4,61 А,

    I4 = II2 = 9,12 – 4,61 = 4,51 А,

    I5 = I2I1 = 4,61 – 6,23 = -1,62 А.

    ЗАДАЧА1.36. Определить токи в схеме рис. 1.38,а, используя эквива-лентные преобразования, если входное напряжение схемы Uвх = 400 В, а пара-метры r1 = 10 Ом, r2 = 60 Ом, r3 = 20 Ом, r4 = 100 Ом, сопротивление нагруз-ки, подключенной на выходе схемы (выход четырёхполюсника), r5 = 50 Ом.

    Рассчитать также коэффициент передачи напряжения kU и коэффициент передачи тока kI.

    Решение. Вариант 1

    Заменим смешанное соединение сопротивлений r3, r4, r5 эквивалентным сопротивлением (рис. 1.38,б) rac:

    rac = r3 + = 20 + = 53,33 Ом.

    Входное сопротивление схемы:

    rвх = r1 + = 10 + = 38,24 Ом.

    Входной ток схемы: Iвх = I1 = = = 10,46 А.

    Напряжение на разветвлении схемы рис. 1.38,б:

    Uad = I1× = 10,46× = 295,4 B,

    а токи I2 = = = 4,92 А, I3 = = = 5,54 А.

    Напряжение на разветвлении правого участка схемы рис. 1.38,а со смешанным соединением Ubc = Uвых = I3× = 5,54× = 184,6 B,

    а токи параллельных ветвей I4 = = = 1,85 А,

    I5 = Iвых = = = 3,69 А.

    Коэффициент передачи напряжения kU = = = 0,462.

    Коэффициент передачи тока kI = = = 0,353.

    Решение. Вариант 2

    Схемы с одним источником питания (это имеет место всегда при изуче-нии вопросов, связанных с передачей сигнала со входа схемы в нагрузку) удобно рассчитывать методом пропорциональных величин. При этом задаются произвольным значением тока или напряжения самого удалённого от источника питания участка – в нашем случае примем ток I5 = 10 А.

    Затем с помощью законов Кирхгофа рассчитывают напряжение на входе (так называемое воздействие), которое на выходе создаёт ток I5 (так называемая реакция цепи), который равен принятому значению:

    I4 = = = 5 A, I3 = I5 + I4 = 10 + 5 = 15 A,

    I2 = = = 13,33 A, I1 = I2 + I3 = 13,33 + 15 = 28,33 A,

    Uвх = I1×r1 + Uad = 28,33×10 + 800 = 1083 B.

    Находят коэффициент пропорциональности k = = = 0,369, на

    который необходимо умножить все ранее полученные выражения, чтобы получить искомые значения при заданном напряжении Uвх = 400 В.

    Получаем I1 = I1×k = 28,33×0,369 = 10,46 А,

    I2 = I2×k = 13,33×0,369 = 4,92 А, I3 = I3×k = 15×0,369 = 5,54 А,

    I4 = I4×k = 5×0,369 = 1,85 А, I5 = I5×k = 10×0,369 = 3,69 А,

    Uad = Uad×k = 800×0,369 = 295,4 B, U5= Uвых = U5×k = 500×0,369 = 185 B,

    что совпадает с решением по варианту 1.

    ЗАДАЧА 1.37. Рассчитать токи в условиях задачи 1.22 (рис. 1.30) с помощью эквивалентных преобразований, заменив сопротивления звезды r3r4r5 эквива-лентным соединением в треугольник.

    ЗАДАЧА 1.38. Определить токи в ветвях схемы, приведенной на рис. 1.39, заменив треугольник сопротивлений rabrbcrca эквивалентной звездой, если: EA = 50 В, EB = 30 В, EC = 100 В,

    rA = 3,5 Ом, rB = 2 Ом, rC = 7 Ом, rab = 6 Ом, rbc = 12 Ом, rca = 6 Ом.

    Ответы: IA = -0,4 A, IB = -4,4 A, IC = 4,8 A,

    Iab = 2,1 A, Ibc = -2,3 A, Ica = 2,5 A.

    ЗАДАЧА 1.39. Рассчитать токи в схеме рис. 1.40 методом преобразования электрической цепи, проверить БМ, если: r1 = r2 = 6 Ом,

    r3 = 3 Ом, r4 = 12 Ом, r5 = 4 Ом, j = 6 А.

    Ответы: I1 = 1 A, I2 = 1 A, I3 = 2 A,

    I4 = 1 A, I5 = 3 A.

    ЗАДАЧА 1.40. Решить задачу 1.19 с помощью эквивалентных преобразований цепи.

    ЗАДАЧА 1.41. В цепи рис. 1.41 j = 50 мА, E = 60 В, r1 = 5 кОм, r2 = 4 кОм, r3 = 16 кОм, r4 = 2 кОм, r5 = 8 кОм. Вычислить ток ветви с сопротивлением r5, пользуясь преобразованием схем с источниками тока в эквивалентные схемы с источниками ЭДС и наоборот.

    Решение. Вариант 1

    Перерисуем схему рис. 1.41 в виде рис. 1.42,а. Эквивалентность исходной и новой схем очевидна: к соответствующим узлам обеих схем подходят одинаковые токи. В частности, результирующий ток, подводимый к узлу а, равен нулю. Преобразуем источники тока j последней схемы в источники с ЭДС Е1 и Е3 (рис. 1.42,б):

    Е1 = jr1 = 50·10 -3 ·5·10 3 = 250 В;

    Е3 = jr3 = 50·10 -3 ·16·10 3 = 800 В.

    Складывая соответствующие элементы ветвей, приводим рис. 1.42,б к виду рис. 1.42,в, для которого Е6 = ЕЕ1 = 60 – 250 = -190 В;

    r6 = r1 + r2 = 9 кОм; r7 = r3 + r4 = 18 кОм.

    Преобразуем схему рис. 1.42,в в схему с источниками тока рис. 1.42,г:

    j6 = = — = -21,2 мА; j7 = = = 44,4 мА.

    Сложив параллельные элементы, получим схему рис. 1.42,д:

    jЭКВ = j6 + j7 = -21,1 + 44,4 = 22,3 мА; rЭКВ = = = 6 кОм.

    В ветвь r5 ответвляется часть тока jЭКВ, равная

    I5 = jЭКВ· = 23,3· = 10 мА.

    Решение. Вариант 2

    Определим ток jЭКВ эквивалентного источника тока, который равен току IK при замыкании накоротко сопротивления r5 (рис. 1.42,г). Ток IK можно вычислить различными способами, например, методом контурных токов: (r1 + r2)·IIr1·j = —Е;

    Подставляя числовые значения и решая эти уравнения, найдём:

    II = 21,1 мА; III = 44,4 мА; jЭКВ = IIIII = 23,3 мА.

    Затем рассчитаем внутреннюю проводимость gЭКВ источника тока. Она равна проводимости пассивной цепи между зажимами а и b при разомкнутой ветви с r5 (рис. 1.42,ж); ветвь, содержащая источник тока, показана разомкнутой, так как внутреннее сопротивление идеального источника тока бесконечно велико:

    gЭКВ = + = См; r ЭКВ = = 6 кОм.

    На рис. 1.42,д приведена схема эквивалентного источника тока относительно зажимов а и b. Из неё находим искомый ток

    I5 = jЭКВ· = 23,3· = 10 мА.

    Решение. Вариант 3

    Преобразуем треугольник сопротивлений r3r4r5 в эквивалентную звезду (рис. 1.42,з). Её сопротивления равны:

    rа = = кОм; rb = кОм; rd = кОм.

    Полученная схема содержит всего два узла О и с. Узловое напряжение в соответствии с методом двух узлов (см. задачу 1.30):

    UcO = = = 198 B.

    Обращаем внимание на то, что в знаменателе последнего выражения отсутствует слагаемое, учитывающее сопротивление rd. Это связано с тем, что сопротивление источника тока бесконечно велико и прибавление к нему конечного сопротивления rd не изменило бы бесконечно большое сопротивление ветви источника тока. По закону Ома найдём токи

    I¢ = = = 20 мА; I¢¢ = = = 30 мА

    и напряжение между точками а и b Uаb = I¢rаI¢¢rb = (20·64 – 30·8)/13 = 80 B.

    Наконец, определяем искомый ток I5 = = = 10 мА.

    Источник

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Я, Людмила Анатольевна Фирмаль, бывший преподаватель математического факультета Дальневосточного государственного физико-технического института со стажем работы более 17 лет. На данный момент занимаюсь онлайн обучением и помощью по любыми предметам. У меня своя команда грамотных, сильных бывших преподавателей ВУЗов. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И не важно: она по объёму на две формулы или огромная сложно структурированная на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.

    Срок выполнения разный: возможно онлайн (сразу пишите и сразу помогаю), а если у Вас что-то сложное – то от двух до пяти дней.

    Для качественного оформления работы обязательно нужны методические указания и, желательно, лекции. Также я провожу онлайн-занятия и занятия в аудитории для студентов, чтобы дать им более качественные знания.

    У меня конфиденциальность и безопасность высокого уровня. Никто не увидит Ваше задание, кроме меня и моих преподавателей, потому что WhatsApp и Gmail — это закрытые от индексирования системы , в отличие от других онлайн-сервисов (бирж и агрегаторов), в которые Вы загружаете своё задание, и поисковые системы Yandex и Google индексируют всё содержимое файлов, и любой пользователь сможет найти историю Вашего заказа, а значит, преподаватели смогут узнать всю историю заказа. Когда Вы заказываете у меня — Вы получаете максимальную конфиденциальность и безопасность.

    Моё видео:

    Помощь студентам в учёбе

    Как вы работаете?

    Вам нужно написать сообщение в WhatsApp (Контакты ➞ тут) . После этого я оценю Ваш заказ и укажу срок выполнения. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за заказ, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл заказа в личные сообщения.

    Сколько может стоить заказ?

    Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

    Читайте также:  Принцип действия контактора постоянного тока

    Какой срок выполнения заказа?

    Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

    Как оплатить заказ?

    Сначала пришлите задание, я оценю, после вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

    Какие гарантии и вы исправляете ошибки?

    В течение 1 года с момента получения Вами заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Качественно сфотографируйте задание, или если у вас файлы, то прикрепите методички, лекции, примеры решения, и в сообщении напишите дополнительные пояснения, для того, чтобы я сразу поняла, что требуется и не уточняла у вас. Присланное качественное задание моментально изучается и оценивается.

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Теперь напишите мне в Whatsapp или почту (Контакты ➞ тут) и прикрепите задания, методички и лекции с примерами решения, и укажите сроки выполнения. Я и моя команда изучим внимательно задание и сообщим цену.

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Если цена Вас устроит, то я вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Мы приступим к выполнению, соблюдая указанные сроки и требования. 80% заказов сдаются раньше срока.

    Помощь студентам в учёбе

    Помощь студентам в учёбе

    После выполнения отправлю Вам заказ в чат, если у Вас будут вопросы по заказу – подробно объясню. Гарантия 1 год. В течении 1 года я и моя команда исправим любые ошибки в заказе.

    Помощь студентам в учёбе






    of your page —>

    Можете смело обращаться к нам, мы вас не подведем. Ошибки бывают у всех, мы готовы дорабатывать бесплатно и в сжатые сроки, а если у вас появятся вопросы, готовы на них ответить.

    В заключение хочу сказать: если Вы выберете меня для помощи на учебно-образовательном пути, у вас останутся только приятные впечатления от работы и от полученного результата!

    Жду ваших заказов!

    С уважением

    Помощь студентам в учёбе
    Помощь студентам в учёбе
    Помощь студентам в учёбе

    Помощь студентам в учёбе

    Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

    Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

    Помощь студентам в учёбе

    Помощь студентам в учёбеf9219603113@gmail.com


    Помощь студентам в учёбе

    Образовательный сайт для студентов и школьников

    Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

    © Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

    Источник

    

    Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

    На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

    Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

    Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

    В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

    Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Задача 1. Для цепи (рис . 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

    Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

    Задача 2. Для цепи (рис . 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

    Исходную схему можно перечертить относительно входных зажимов (рис . 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

    где R – величина сопротивления, Ом;

    n – количество параллельно соединенных сопротивлений.

    Преобразуем соединение «треугольник » f−d−c в эквивалентную «звезду ». Определяем величины преобразованных сопротивлений (рис . 3, б):

    По условию задачи величины всех сопротивлений равны, а значит:

    На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

    И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

    Задача 4. В заданной цепи (рис . 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

    Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

    Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис . 4, б):

    Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает ») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.

    Задача 5. В цепи (рис . 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

    Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

    Эквивалентное сопротивление всей цепи:

    Ток в неразветвленной части схемы:

    Напряжение на параллельных сопротивлениях:

    Токи в параллельных ветвях:

    Баланс мощностей:

    Задача 6. В цепи (рис . 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

    Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис . 6, б).

    Величина эквивалентного сопротивления:

    Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис . 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

    Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

    Тогда амперметр покажет ток:

    Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис . 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

    Преобразуем «треугольник » сопротивлений R1, R2, R3 в эквивалентную «звезду » R6, R7, R8 (рис . 7, б) и определим величины полученных сопротивлений:

    Преобразуем параллельное соединение ветвей между узлами 4 и 5

    Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

    Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

    Тогда ток в ветви с сопротивлением R3 определится:

    Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

    Источник