Меню

Напряжение в треугольнике постоянный ток

Значения напряжения, тока и мощности при соединениях звездой и треугольником

Открытие великим Фарадеем закономерности: при пересечении проводником силовых линий магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник, — послужило основой для создания электрогенераторов с вращающимся ротором — магнитом. ЭДС наводится при этом в обмотках статора (смотрите — Практическое применение закона электромагнитной индукции Фарадея).

Получаемые напряжения могут быть самые разные: все зависит от конструкции генератора, от числа обмоток в статоре и способах их соединения. Однако в практической электротехнике самое широкое распространении получила трехфазная система синусоидального тока, предложенная выдающимся русским инженером М.О. Доливо-Добровольским в 1888 году (через 57 лет после открытия Фарадея).

Из всех многофазных систем трехфазная обеспечивает наиболее экономичную передачу электрической энергии на дальние расстояния и позволяет создать надежные в работе и простые по устройству генераторы, электродвигатели и трансформаторы. Но и три обмотки могут быть соединены двумя способами: «треугольником» (рис. 1) и «звездой» (рис. 2).

Схема соединения треугольником

схема соединения звездой

Фазным называют напряжение Uф создаваемое одной обмоткой, линейным Uл — напряжение между двумя линейными проводами. Другими словами, фазное напряжение — это напряжение между каждым из линейных проводов и нулевым проводом.

При соединении симметричного генератора в звезду линейное напряжение по значению в 1,73 раз больше фазного, т.е. Uk = 1,73•Uф. Это следует из того, что Uл — основание равнобедренного треугольника с острыми углами по 30°: Uл = UАВ = Uф 2 cos 30° = 1,73•Uф.

При соединении и нагрузки в звезду соответствующий линейный ток равен фазному току нагрузки. Если трехфазная нагрузка симметричная, то ток в нулевом проводе будет равен 0. В этом случае надобность в нулевом проводе вообще отпадает и трехфазная цепь превращается в трехпроводную. Это соединение называют «звезда-звезда без нулевого провода». При симметричной нагрузке фаз линейные токи по величине в 1,73 больше фазных токов, Iл = 1,73•3Iф.

При соединении трехфазного генератора звездой используются два напряжения, что выгодно отличает это соединение от соединения треугольником. Но при соединении нагрузки треугольником все фазы находятся под одним и тем же по числовому значению линейным напряжением независимо от сопротивления фаз, что важно для осветительной нагрузки — ламп накаливания.

Трехфазная система с нулевым проводом применяется для питания приемников двух напряжений, различающихся в 1,73 раз, например, лапм, включаемых на фазное напряжение, и двигателей, включаемых на линейное напряжение.

Номинальное напряжение определяется конструкцией генераторов и способом соединения его обмоток.

На рисунке 3 показаны зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником.

Зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником

По виду формулы одинаковы, казалось бы нет ни выигрыша, ни проигрыша в мощности для этих двух разновидностей электроцепей. Но не спешите с выводами.

При пересоединении из треугольника в звезду на каждую фазную обмотку приходится в 1,73 раза более низкое напряжение, хотя напряжение в сети остается прежним. Уменьшение напряжения приводит к уменьшению и тока в обмотках в те же 1,73 раза. И еще — при соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь эти токи равны. В итоге линейный ток при пересоединении в звезду уменьшился в 1,73 • 1,73 = 3 раза.

Новую мощность вычисляют действительно по той же формуле, но подставляя иные величины!

Асинхронные электродвигатели

При пересоединении электродвигателя с треугольника на звезду и питании его от той же сети мощность, развиваемая этим двигателем, снижается в 3 раза. При переключении со звезды на треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например, с 380 до 220 В.

Мощность генератора или трансформатора остается прежней, потому что напряжение и ток в каждой фазной обмотке сохраняются, хотя ток в линейных проводах возрастает в 1,73 раза. При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника на звезду происходят обратные явления: линейное напряжение сети повышается в 1,73 раза, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Источник

Напряжение в треугольнике постоянный ток

Преобразования треугольник-звезда и звезда-треугольник

Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):

analiz127

Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.

Читайте также:  Определить направление индукционного тока в соленоиде при приближении южного полюса магнита

Существует несколько уравнений, используемых для преобразования одной цепи в другую:

analiz128

Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?

Использовать их можно в несбалансированных мостовых схемах:

analiz129

Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.

Помочь в этой ситуации нам сможет преобразование треугольник — звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:

analiz130

После преобразования схема примет следующий вид:

analiz131

В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.

analiz132

analiz133

Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:

analiz134

Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):

analiz135

analiz136

Переносим эти напряжения в исходную схему (между точками А, В и С):

analiz137

Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.

К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):

analiz138

Моделирование при помощи программы PSPICE подтвердит наши расчеты:

Источник

105. Соединение треугольником

Кроме соединения звездой, генераторы или потребители трехфазного тока могут включаться треугольником.

На фиг. 187 представлена несвязанная трехфазная система. Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы, переходим к трехфазной трехпроводной системе, соединенной треугольником.

Как видно из фиг. 188, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз подключаются линейные провода.

Если обмотки генератора соединены треугольником, то, как видно из фиг. 188, линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному:

Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру. Составляем уравнения токов

Отсюда видно, что линейные токи равны геометрической разности фазных токов. При равномерной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120°. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи (фиг. 189). Зависимость между фазными и линейными токами при соединении в треугольник показана на фиг. 190.

Следовательно, при равномерной нагрузке, соединенной треугольником, линейный ток в раз больше фазного тока.

На фиг. 191 дана векторная диаграмма токов н напряжений при равномерной активно индуктивной нагрузке, соединенной треугольником. Построение диаграммы производится следующим образом. В выбранном масштабе строим равносторонний треугольник линейных напряжений сети UАB , UBC, и UАС, : которые равны фазным напряжениям потребителя. В сторону отставания под углами к линейным напряжениям UАB , UBC, и UCA строим в масштабе векторы фазных токов IАB , I BC, и I CA • Затем, как было указано раньше, определяем линейные токи IА , I B, и I C

Пример 2. Линейное напряжение, подводимое к трехфазному электродвигателю, равно 220 в. Обмотка двигателя имеет полное сопротивление г, равное 10 ом. Определить токи в линейных проводах и в обмотке двигателя, если последняя соединена треугольником (фиг. 192, а).

Так как при соединении треугольником UЛ = Uф , то

Изоляция фазы двигателя рассчитана на напряжение 220 в, а сечение фазной обмотки рассчитано по нагреву на ток 22 а.

При соединении треугольником =22-1,73=38 а.

Тот же двигатель можно включить и на линейное напряжение 380 в, переключив обмотки двигателя звездой (фиг. 192, б).

В двигателях и других потребителях трехфазного тока в большинстве случаев наружу выводят все шесть концов трех обмоток, которые по желанию можно соединять либо звездой, либо треугольником. Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на которую и выводят все шесть концов.

Читайте также:  Исследование электрической цепи постоянного тока с линейными элементами

На фиг. 193 показана схема присоединения контактов на клеммной доске к концам обмоток трехфазной машины. Медные перемычки позволяют легко менять схему включения обмоток.

Если у нас есть двигатель, на паспорте которого написано 127/220 в, значит этот двигатель можно использовать на два на пряжения: 127 и 220 в.

Если линейное напряжение равно 127 в, то обмотки двигателя необходимо включить треугольником (фиг. 193, б). Тогда обмотка фазы двигателя попадает под напряжение 127 в. При напряжении 220 в обмотки двигателя нужно включить звездой (фиг. 193, а), тогда обмотка фазы также будет под напряжением 127 в.

Источник



Свойства звезды и треугольника

Дата публикации: 17 июля 2013 .
Категория: Статьи.

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда» и «Схема соединения «Треугольник». Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность.

В сетях переменного тока различают:
полную (кажущуюся) мощность S = E × I или S = U × I;
активную мощность P = E × I × cos φ или P = U × I × cos φ;
реактивную мощность Q = E × I × sin φ или Q = U × I × sin φ,
где Е – электродвижущая сила (э. д. с.); U – напряжение на зажимах электроприемника; I – ток; φ – угол сдвига фаз между током и напряжением 1 .

При определении мощности генераторов в формулы входят э. д. с, при определении мощности электроприемииков – напряжения на их зажимах. При определении мощности электродвигателей учитывают также коэффициент полезного действия, так как на табличке электродвигателя указывается мощность на его валу.

Мощность при соединении в звезду

При соединении в звезду линейные токи I и фазные токи Iф равны, а между фазными
и линейными напряжениями существует соотношение U = √3 × Uф, откуда Uф = U / √3.

Сопоставляя эти формулы, видим, что выраженные через линейные величины при соединении в звезду мощности равны:
полная S = 3 × Sф = 3 × (U / √3) × I = √3 × U × I;
активная P = √3 × U × I × cos φ;
реактивная Q = √3 × U × I × sin φ.

Мощность при соединении в треугольник

При соединении в треугольник линейные U и фазные Uф напряжения равны, а между фазными и линейными токами существует соотношение I = √3 × Iф, откуда Iф = I / √3.

Поэтому выраженные через линейные величины при соединении в треугольник мощности равны:
полная S = 3 × Sф = 3 × U × (I / √3) = √3 × U × I;
активная P = √3 × U × I × cos φ;
реактивная Q = √3 × U × I × sin φ.

Важное замечание. Одинаковый вид формул мощности для соединений в звезду и треугольник иногда служит причиной недоразумений, так как наталкивает недостаточно опытных людей на неправильный вывод, будто вид соединений всегда безразличен. Покажем на одном примере, насколько ошибочен такой взгляд.

Электродвигатель был соединен в треугольник и работал от сети 380 В при токе 10 А с полной мощностью

S = 1,73 × 380 × 10 = 6574 В×А.

Затем электродвигатель пересоединили в звезду. При этом на каждую фазную обмотку пришлось в 1,73 раза более низкое напряжение, хотя напряжение в сети осталось тем же. Более низкое напряжение привело к тому, что ток в обмотках уменьшился в 1,73 раза. Но и этого мало. При соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь фазный и линейный токи равны.

Таким образом, линейный ток при пересоединении в звезду уменьшился в 1,73 × 1,73 = 3 раза.

Иными словами, хотя новую мощность нужно вычислять по той же формуле, но подставлять в нее следует иные величины, а именно:

S1 = 1,73 × 380 × (10 / 3) = 2191 В×А.

Из этого примера следует, что при пересоединении электродвигателя с треугольника в звезду и питании его от той же электросети мощность, развиваемая электродвигателем, снижается в 3 раза.

Что происходит при переключении со звезды в треугольник и обратно в наиболее распространенных случаях?

Оговариваем, что речь идет не о внутренних пересоединениях (которые выполняют в заводских условиях или в специализированных мастерских), а о пересоединениях на щитках аппаратов, если на них выведены начала и концы обмоток.
1. При переключении со звезды в треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например с 380 до 220 В. Мощность генератора и трансформатора остается такой же. Почему? Потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза.

Читайте также:  Как ударять током пальцем

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления, то есть линейное напряжение в сети повышается в 1,73 раза, например с 220 до 380 В, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Значит, и генераторы и вторичные обмотки трансформаторов, если у них выведены все шесть концов, пригодны для сетей на два напряжения, отличающихся в 1,73 раза.

2. При переключении ламп со звезды в треугольник (при условии их присоединения к той же сети, в которой лампы, включенные звездой, горят нормальным накалом) лампы перегорят.

При переключении ламп с треугольника в звезду (при условии, что лампы при соединении в треугольник горят нормальным накалом) лампы будут давать тусклый свет. Значит, лампы, например, на 127 В в сеть напряжением 127 В должны включаться треугольником. Если же их приходится питать от сети 220 В, необходимо соединение в звезду с нулевым проводом (подробнее смотрите статью «Схема соединения «Звезда»). Соединять в звезду без нулевого провода можно только лампы одинаковой мощности, равномерно распределенные между фазами, как, например, в театральных люстрах.

3. Все сказанное о лампах относится и к сопротивлениям, электрическим печам и тому подобным электроприемникам.

4. Конденсаторы, из которых собирают батареи для повышения cos φ, имеют номинальное напряжение, которое указывает напряжение сети, к которой конденсатор должен присоединяться. Если напряжение сети, например, 380 В, а номинальное напряжение конденсаторов 220 В, их следует соединять в звезду. Если напряжение сети и номинальное напряжение конденсаторов одинаковы, конденсаторы соединяют в треугольник.

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник, мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит.

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание предохранителей, отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на период пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² — 0,82² = 0,36).

Источник: Каминский Е.А., «Звезда, треугольник, зигзаг» — 4-е издание, переработанное — Москва: Энергия, 1977 — 104с.

Источник