Меню

Небрат расчеты токов короткого замыкания для релейной защиты

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

Расчет токов КЗ (Страница 1 из 2)

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений с 1 по 20 из 36

1 Тема от Roman P 2018-03-31 13:23:44

  • Roman P
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2014-08-04
  • Сообщений: 166
  • Репутация : [ 0 | 0 ]

Тема: Расчет токов КЗ

Добрый день!
Сразу прошу прощения если подобная тема уже создавалась!

Мне необходимо рассчитать токи КЗ на линии питающей ТСН (6/04), сразу предупреждаю, что делаю это в первые!
Какие были у меня действия!? Конечно же Гугл).
Наткнулся на сайт, где насчитывают практически мой пример
http://zametkielectrika.ru/raschet-toko … amykaniya/

Вроде бы все хорошо, за исключением:
1. Как найти ток короткого замыкания на сборных шинах (по проекту) если нету проекта!?
2. Меня смущает расчет, почему «он» делит МВА на кВ и получает кА? ( Я думал надо приводить к одной величине, или я ошибаюсь?)
3. Если всё-таки есть возможность посчитать ток короткого замыкания на сборных шинах (по проект) то для дальнейшего расчета необходимо принимать минимальный или максимальный ток КЗ? (Попробую пояснить, шины питают несколько генератор, следовательно мин. ток КЗ будет если в работе только один генератор, а макс. ток КЗ если в работе будут все машины.

Просьба сильно не ругаться на меня, раньше никогда сталкиваться с подобными проблемами не приходилось.( Всегда уставки выдавала проектная организация или эксплуатация, у теперь грубо говоря сам стал эксплуатацией)
Помогите пожалуйста разобраться с этим нелегким делом.

2 Ответ от retriever 2018-03-31 23:50:15

  • retriever
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2012-11-26
  • Сообщений: 2,394
  • Репутация : [ 11 | 0 ]

Re: Расчет токов КЗ

1. потому что мега это 1000 000, а кило это 1000. делим миллион на тысячу получаем что? тысячу.
2. смотрите от чего запитана пс. если это понижающий трансформатор, то считаете его сопротивление, это сопротивление системы. если это кабель от другой пс, ищете питающую гпп на схеме, берете сопротивление тамошнего трансформатора и прибавляете к нему сопротивление кабеля. по-моему, активную составляющую сопротивления кабеля лучше учесть, она большая

3 Ответ от Roman P 2018-09-28 11:27:01 (2018-09-28 11:26:51 отредактировано Roman P)

  • Roman P
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2014-08-04
  • Сообщений: 166
  • Репутация : [ 0 | 0 ]

Re: Расчет токов КЗ

1. потому что мега это 1000 000, а кило это 1000. делим миллион на тысячу получаем что? тысячу.
2. смотрите от чего запитана пс. если это понижающий трансформатор, то считаете его сопротивление, это сопротивление системы. если это кабель от другой пс, ищете питающую гпп на схеме, берете сопротивление тамошнего трансформатора и прибавляете к нему сопротивление кабеля. по-моему, активную составляющую сопротивления кабеля лучше учесть, она большая

Спасибо!
Но я всё равно недопонимаю.
Вот приложен мой расчет, подскажите где я ошибаюсь. Вроде все по «книге» делаю

Добавлено: 2018-09-28 12:25:57

Добавлено: 2018-09-28 12:27:01

Доброго времени суток!
Все таки нашел я часть книг которые искал, а начал изучать. По стечению обстоятельств я единственный «релейщик» в этой конторе. Начальство дало задание, мол строится новая ГПЭС, ты ее будешь обслуживать, тебе и уставки считать! Честно признаюсь что кроме как в техникуме нигде токи коротких замыканий мне считать не приходилось, за исключением нескольких попыток которые на этом форуме были изложены (но так ничего и не вышло).
Посмотрел я на однолинейную схему и решил начать расчеты с самой просто ячейки (на мой взгляд), это ячейка питающая ТСН. На вскидку прикинул набор необходимых защит (отсечка, мтз, перезагрузка, землянка) решил, что сделал верный выбор.
Открыл книжку М.А. Шабад «Защита трансформаторов 10 кВ», и начал погружаться в мир «высоких материй». Ладно отойдем от лирики, и начну излагать суть моих расчетов (забегая вперед скажу что проблема возникла уже на второй формуле).
Из книги М.А. Шабад «Защита трансформаторов 10 кВ»
«Вычисление тока трехфазного КЗ по значению напряжения КЗ трансформатора. Наиболее просто максимально значение тока (в амперах) трехфазного КЗ за трансформатором вычисляется по значению напряжения КЗ трансформатора:
I(3)к=100*Iном. тр/Uк+р;
где Uк — напряжение кз из паспорта в %;
Iном.тр — ном. ток тр-ра на стороне НН или ВН из паспорта;
p=100*Sном/Sk
где Sном — ном. мощность тр-ра
Sк — мощность трехфазного КЗ питающей энергосистемы в той точке, где подключается трансформатор, т.е. на его выводах ВН, если мощность энергосистемы относительно велика, то p=0.»
Дальше в книжке идут примеры расчетов, но во всех примерах он использует значение Sк =100 МВА (видимо произвольная величина).
Я начал искать где же взять эту величину, как ее рассчитать ну или спросить у кого).
Наткнулся я на учебное пособие «Расчет токов коротких замыканий и проверка электрооборудования» С.В. Хавроничев, И. Ю. Рыбкина (не знаю реклама это или нет), так вот там написано что: » Для практических расчетов важно определить, можно ли в данном конкретном случае считать питающую систему системой неограниченной мощности. Если известна суммарная мощность генераторов системы, но при выполнении одного из условий
Хс*S/U^2 Post’s attachments

IMG_20180401_093818.jpg 3.11 Мб, 3 скачиваний с 2018-04-01

You don’t have the permssions to download the attachments of this post.

Источник

ОСОБЕННОСТИ РАСЧЕТОВ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ ДЛЯ СИСТЕМ РЕЛЕЙНОЙ ЗАЩИТЫ

date image2015-01-21
views image1574

facebook icon vkontakte icon twitter icon odnoklasniki icon

В целях упрощения расчётов токов КЗ принимаются ряд допущений, которые подробно рассмотрены в курсе «Электроснабжение». По величинам токов КЗ определяются параметры срабатывания токовых защит и чувствительность защит напряжения.

Для выбора типов и уставок различных устройств ре­лейной защиты и автоматики требуется определение зна­чения (а иногда и фазы) тока, проходящего по обмотке реле, и напряжения в местах установки аппаратуры. Расчеты производят используя математи­ческий метод симметричных составляющих. Отдельные последовательности электрических величин имеют кон­кретный физический смысл и могут быть измерены; например, сопротивление для токов прямой (положитель­ной) последовательности может быть определено при вра­щении питающего генератора по часовой стрелке, обратной (отрицательной) – против часовой стрелки, сопротивление нулевой последовательности – по схемам на рис.1.5.

Читайте также:  По руке пошел ток

Рис.1.5. Схемы, поясняющие прохож­дение токов нулевой последовательности.

а — по обмоткам силового трансформатора; б — по трехфазной линии электропередачи.

В аналитических расчетах для нахождения полного тока или его симметричных составляющих, проходящих по участкам сети, должны быть определены составляю­щие отдельных последовательностей полного тока в ме­сте короткого замыкания и произведено распределение тока каждой из последовательностей по ветвям схемы замещения соответствующей последовательности.

Обычно расчеты производят для начального значе­ния времени, определяя начальное значение периодиче­ской составляющей тока короткого замыкания. Сопро­тивления генераторов и синхронных компенсаторов учи­тываются сверхпереходным реактивным сопротивлением Х˝d.. В случаях, не оговоренных специально, ЭДС раз­ных генераторов предполагаются совпадающими по зна­чению и фазе. Значение ЭДС за сверхпереходным со­противлением равно

,

где Uф.н — номинальное фазное напряжение генератора;

UФ.ср — среднее значение между наибольшим и наименьшим значениями фазного напряжения на шинах подстанции данного напряжения;

Iн — номинальный ток генератора;

φ — угол между вектором тока и напряжения;

k= 1,05..1,15 — коэффициент пропорциональности.

Затухание тока в процессе короткого замыкания обычно учитывают только при проверке чувствительности резервных защит от междуфазных коротких замыка­ний генераторов, блоков генератор — трансформатор и трансформаторов, подключенных к шинам генераторного напряжения. Ориентировочно можно принимать значение установившегося тока короткого замыкания при трех­фазном коротком замыкании на зажимах генераторов, снабженных регуляторами возбуждения, 2,6—3 номи­нального, а при трехфазном коротком замыкании на за­жимах вторичной стороны трансформатора блока гене­ратор— трансформатор 2,3—2,7 номинального. Для за­щиты других элементов затухание тока короткого замыкания по времени не учитывают по следующим со­ображениям:

— все генераторы и синхронные компенсаторы снаб­жены устройствами автоматического регулирования воз­буждения, действие которых снижает индуктивное сопро­тивление синхронной машины, увеличивающееся в про­цессе длительного короткого замыкания;

-короткие замыкания происходят в электрическом удалении от большинства генерирующих источников: доля тока от генераторов, сопротивление которых может существенно меняться, незначительны и не вносит су­щественной ошибки в расчет;

-основные защиты объектов в энергетических си­стемах имеют собственное время порядка 0,1 сек; бла­годаря этому, с одной стороны, на работе защиты не сказывается затухание тока, а с другой стороны — дей­ствие защиты отстроено от влияния апериодической со­ставляющей тока короткого замыкания; для тех же ти­пов быстродействующих защит, на работу которых апе­риодическая составляющая начального тока оказывает влияние, оно учитывается коэффициентом kап (например, для дифференциальной защиты без быстронасыщающе­гося трансформатора Аап=1,5…2,0);

— медленно действующие защиты, в процессе рабо­ты которых ток, проходящий в обмотках реле, может заметно уменьшиться (например, ток в реле резервной защиты линий или неполной дифференциальной защиты шин при коротком замыкании на шинах генераторного напряжения) имеют коэффициент чувствительности, пе­рекрывающий возможное уменьшение тока (резервная защита от сверхтоков), или выполняются с мгновенным замером значения начального тока (неполная диффе­ренциальная защита шин); уменьшение начального тока в процессе короткого замыкания также компенсируется тем, что возврат реле происходит при значениях тока меньших, чем ток срабатывания (коэффициент возврата токовых реле kв = 0,80…0,85).

Выражения для расчетов токов и напряжений при различных наиболее часто встречающихся видах корот­ких замыканий, схемы замещения, векторные диаграм­мы приведены на рис. 1.6, а эпюры напряжений—на рис.1.7.

Рис. 1.6 Токи и напряжения при коротких замыканиях

Значение тока, проходящего по обмоткам токовых реле резервной защиты генераторов, блоков генератор — трансформатор и трансформаторов, присоединенных к шинам генераторного напряжения, можно определять, используя кривые затухания токов короткого замыкания, построенные для типового генератора и учитывающие условную нагрузку потребителей.

Рис.1.7 Напряжения при коротком замыкании

/ — трехфазном; 2, 3 — двухфазном; 4, 5, 6 — однофазном; 7, 8, 9 — двухфазном на землю.

На рис.1.8 показана зависимость кратности периоди­ческой составляющей установившегося тока трехфазного короткого замыкания по отношению к номинальному току от электрической удаленности места повреждения. Электрическая удаленность оценивается суммарным сопротивлением от места приложения ЭДС до места короткого замыкания, выраженным в относительных еди­ницах и приведенным к базисной мощности генератора,

,

где — сверхпереходное сопротивление генератора;

— сопротивление цепи от генератора до места КЗ.

Рис. 1.8. Зависимость кратности периодической составляющей установившегося тока трехфазного короткого замыкания типового генератора от электрической удаленности места повреждения.

а —для паротурбогенераторов; б — для паротурбогенератороч с регуляторами возбуждения: в — для гидрогенераторов с регуляторами возбуждения (при наличии на генераторах успокоительной обмотки х*∑ должно быть увеличено на 0,07).

При пользовании кривыми по рис.1.8, если сопротивление х вычислено в омах при базисном напряжении, равном номинальному междуфазному напряжению гене­ратора Uн.мф, должен быть произведен перерасчет в от­носительные единицы, приведенные к номинальной мощ­ности генератора,

Изменение значения периодической составляющей тока трехфазного короткого замыкания при данной уда­ленности в зависимости от времени с момента возникно­вения повреждения определяется по кривым затухания. Эти кривые приведены в учебной и справочной литерату­ре. Из кривых, в частности, видно, что при удаленных коротких замыканиях *∑ >2) установившееся значе­ние периодической составляющей тока короткого замы­кания практически не отличается от начального значе­ния и, следовательно, ток, проходящий по поврежден­ным фазам от генератора при двухфазном коротком замыкании, составляет 86,7% тока, проходящего от ге­нератора при трехфазном коротком замыкании в той же точке. При повреждениях в электрически более близких пунктах установившееся значение тока двухфазного короткого замыкания генератора за счет разных намаг­ничивающих сил реакции якоря при двух и трехфазных коротких замыканиях может быть больше, чем уста­новившийся ток генератора при трехфазном коротком замыкании, и зависит от конструкции машины: напри­мер, отношение токов Iк (2) /I (3) при коротких замыканиях на зажимах обмотки статора паротурбогенераторов мо­жет доходить до 1,5, а у гидрогенераторов — до 1,1. При ориентировочной оценке чувствительности резервной за­щиты, реагирующей на токи обратной последователь­ности, для упрощения вычислений расчетные значения токов при двухфазных коротких замыканиях могут при­ниматься равными 86,7% значения тока при трехфазном коротком замыкании в той же точке независимо от ее электрической удаленности; при этом учитывается, что фактическая чувствительность защиты будет больше чем определённая расчётом.

Читайте также:  Пропускает ли магнит электрический ток

Основным назначением релейной защиты являются выявление места возникновения короткого замыкания и быстрое автоматическое отключение поврежденного элемента сети. Это защита действия на отключение.

При возникновении нарушения нормальных режимов работы (перегрузка, замыкание на землю одной фазы в сети с изолированной нейтралью, понижение уровня масла в трансформаторе и др.), когда эти явления не представляют непосредственной опасности для электрооборудования, достаточно дать предупредительный сигнал оперативному персоналу — это защита действующая на сигнал.

Источник

Расчет токов короткого замыкания (КЗ), пример, методические пособия

расчет токов кз

В этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.

1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;

2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;

3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.

Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:

1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;

2. Программа для расчета токов КЗ в сетях 0.4 кВ.

Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН). В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом. Имеет место следующая зависимость:

Расчетная схема для определения токов КЗРис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з. на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:
Расчет токов короткого замыкания (КЗ), пример, методические пособия
Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ. Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.

Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.

Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.

Схема замещения в случае наличия реактора при питании секций

Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.

В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.

В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.

Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.

Базисные токи в точках короткого замыкания К1 – К4, кА:

Расчет токов короткого замыкания (КЗ), пример, методические пособияПри расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
Расчет токов короткого замыкания (КЗ), пример, методические пособиягде uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.

Читайте также:  Стабилитроны с минимальным током стабилизации

При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.

В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).

Сопротивление участка магистрали резервного питания:

в относительных единицах:

где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.

Сопротивление трансформатора собственных нужд 6/0,4 кВ:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.

Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.

Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н).

Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;

Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).

При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.

Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.

По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:

Источник



Расчеты токов короткого замыкания для релейной защиты. Небрат И.Л.

В книге рассматриваются методы и примеры расчетов токов короткого замыкания в электрических сетях напряжением от 0,4 до 330кВ, предназначенные для выбора уставок релейной защиты. Приведены необходимые справочные данные. А также в книге рассматриваются расчеты симметричных и несимметричных коротких замыканий.

Для специалистов по релейной защите электрических сетей и станций энергосистем и предприятий.

СОДЕРЖАНИЕ

Часть первая

2 Общие сведения о коротких замыканиях

3 Виды коротких замыканий

4 Основные допущения при расчетах короткого замыкания

5 Порядок ведения расчетов токов короткого замыкания

5.1 Выбор и составление расчетной схемы электрической сети и схемы замещения

5.2 Расчет параметров элементов схемы замещения

5.3 Выбор видов короткого замыкания

5.4 Выбор расчетных режимов работы схемы

5.5 Преобразование схемы замещения относительно заданной точки КЗ

5.6 Распределение токов короткого замыкания по ветвям

6 Примеры расчетов трехфазных КЗ в электрических сетях

17 Ноябрь, 2007 01:11 21427 Загрузок: 2621 633kb ZIP &nbspСКАЧАТЬ

  • 1
  • 2
  • 3
  • 4
  • 5

3 / 9 ( Средне )

Закрытая информация, только для зарегистрированных пользователей!

Скачать файл по прямой ссылке на высокой скорости

Источник