Меню

Определить мгновенное значение тока если известны

Расчет действующих и мгновенных значений токов во всех ветвях цепи

Преобразуем заданное напряжение источника в комплексную форму U и определяем действующее значение входного тока I1в неразветвленной части цепи:

A.

Падение напряжения на разветвленном участке цепи:

U23 = I1×Z23 = 3,22e –j40,96 ° ×15,02e -j 14,86 ° = 48,36e –j 55,82° В.

Действующие значения токов на разветвленных участках цепи:

= (-0,39 – j1,81) A;

= 2,82 — j0,30 A.

Мгновенные значения токов i1, i2, i3 определяем по их комплексным действующим значениям I1, I2, I3.

Комплексные амплитуды токов:

I m1 = I1 = ×3,22e –j40,96 ° B;

I m2 = I2 = ×1,85e -j102,22 ° B;

I m3 = I3 = ×2,84e — j6.06 ° B.

Мгновенные значения токов:

А;

А;

А.

Расчет действующих значений падений напряжений на всех элементах цепи

Определяем падения напряжений на всех элементах электрической цепи, как в показательной, так и в алгебраической форме представления:

U R1 = I1 × R1 = 3,22e –j40,96 ° ×16 = 51,52e –j40.96 ° = 38,91 – j33,77 В;

U C1 = I1 × (-jXC1 ) = 3,22e –j40,96 ° ×11,78 e –j90 ° = 37,93e –j130.96 ° =- 24,86 – j28,64 В;

U L1 = I1 × jXL1 = 3,22e –j40,96 ° ×21,54e j90 ° = 69,36 e j49,09 ° = 45,42 + j52,42 В;

U R2 = I2 × R2 = 1,85e –j102,22 ° ×18 = 33,3 e –j102.22 ° = -7,05- j32,55 В;

U L2 = I2 × jXL2 = 1,85e –j102,22 ° ×18,9e j90 ° = 34,96 e -j12,22 ° = – 34,17 – j7,40 В;

UС 2 = I3 × (-jXC2 ) = 2,84e -j6,06 ° ×13 e –j90 ° = 36,92 e –j96,06 ° = -3,90 – j36,71 В

U R3 = I3 × R3= 2,84e -j6.06 ° × 11 = 31,24 e -j6,06 ° = 31,06 — j3,30 В;

2.4. Составление баланса мощностей

В любой электрической цепи алгебраическая сумма мощностей всех источников электрической энергии должна быть равна алгебраической сумме мощностей всех приемников (потребителей).

Комплексное значение полной мощности в цепи переменного тока определяется через произведение комплексного значения напряжения источника на сопряженное комплексное значение тока: = UI * . Такое равенство справедливо, поскольку = Se j j s = UI * = Ue j j u ∙ Ie – j j i .

Сопряженное комплексное значение тока I * отличается от комплексного значения тока I знаком перед мнимой частью. Если I =Ie j j i , то I * = Ie –j j i [2].

Полная активная и реактивная мощности источника:

= P ± jQ,

где U = 100e – j 30 ° В, I 1 = 3,22e j 40,96° А;

= UI * =100e – j 30 ° ×3,22e j 40,96° = 322e j 10,96 ° = (316,13 + j61,22) ВА.

Активная и реактивная мощности потребителей:

P = 316,13 Вт; Q = j61,22 вар.

Согласно закону сохранения энергии активная мощность источников в цепи равна сумме активных мощностей всех n потребителей, находящихся в схеме:

Вт.

По закону сохранения энергии реактивная мощность источников равна алгебраической сумме реактивных мощностей всех m потребителей, входящих в цепь (при активно-индуктивной нагрузке Xk >0, при активно-емкостной нагрузке Xk

Источник

Расчет действующих и мгновенных значений токов во всех ветвях цепи

КУРСОВАЯ РАБОТА

по дисциплине «Электротехника и электроника»

«Расчет линейных электрических цепей с синусоидальным источником ЭДС с использованием символического метода»

Выполнил: студент группы РТ-151

Проверил: ассистент кафедры ТиОЭ

Техническое задание к курсовой работе

В электрической цепи (рис. 1), содержащей один источник электрической энергии напряжением , выполнить следующие действия:

1. Определить комплексное входное сопротивление цепи.

2. Найти действующие и мгновенные значения токов во всех ветвях схемы.

3. Рассчитать действующие значения падений напряжений на всех элементах цепи.

4. Составить баланс мощностей.

5. Провести проверку расчетов по I и II законам Кирхгофа.

6. Построить топографическую векторную диаграмму токов и напряжений.

При решении поставленных задач использовать символический метод расчета.

Рис. 1. Схема электрической цепи

Параметры элементов электрической цепи заданы в таблице 1.

Вариант Номер схемы U j f r1 r2 r3 L1 L2 L3 C1 C2
В град Гц Ом мГн мкФ

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. РАСЧЕТНАЯ ЧАСТЬ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1. Расчет комплексного входного сопротивления цепи . . . . . . . . .
2.2. Расчет действующих и мгновенных значений токов во всех ветвях цепи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3. Расчет действующих значений падений напряжений на всех элементах цепи. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4. Составление баланса мощностей . . . . . . . . . . . . . . . . . . . . . . . . .
2.5. Проверка расчетов по I и II законам Кирхгофа . . . . . . . . . . . . . .
2.6. Построение топографической векторной диаграммы токов и напряжений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ЗАКЛЮЧЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Список использованной литературы. . . . . . . . . . . . . . . . . . . . . . . . . .

ВВЕДЕНИЕ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Сущность символического метода расчета цепей синусоидального тока состоит в том, что для упрощения расчета переходят от решения уравнений для мгновенных значений токов и напряжений, являющихся интегро-дифференциальными уравнениями, к алгебраическим уравнениям в комплексной форме. Метод называют символическим потому, что токи и напряжения заменяют их комплексными изображениями или символами [1]. При таких условиях расчет цепи удобнее вести для комплексных действующих величин синусоидальных токов и напряжений.

В данной курсовой работе для определения токов и напряжений каждого элемента схемы, содержащей только один источник электрической энергии, следует использовать метод эквивалентных преобразований, поскольку известны сопротивления всех элементов цепи и ЭДС источника.

Для решения такой задачи отдельные участки электрической цепи с последовательно или параллельно соединенными элементами заменяют одним эквивалентным комплексным сопротивлением, как показано на рисунке 2. Электрическую схему упрощают постепенным преобразованием отдельных участков и приводят к простейшей цепи, содержащей источник электрической энергии и эквивалентный пассивный элемент (рис. 3), включенный последовательно [1].

РАСЧЕТНАЯ ЧАСТЬ

Расчет комплексного входного сопротивления цепи

Вычисляем реактивные сопротивления элементов схемы:

XL1 = 2p fL1 = 2p ×100×35×10 –3 = 17,59 Ом;

XL2 = 2p fL2 = 2p ×100×44×10 –3 = 22,12 Ом;

XL3 = 2p fL3 = 2p ×100×25×10 –3 = 12,57 Ом;

Разбиваем схему на три участка по числу токов в ветвях (рис. 2) и рассчитываем комплексные сопротивления каждого участка (ветви).

Рис. 2. Схема замещения заданной цепи с эквивалентными комплексными сопротивлениями

Комплексные сопротивления участков цепи:

= 44,81e — j23,8º Ом;

= 6,33e j90º Ом;

= 27,98e j26,7º Ом.

Рассчитываем эквивалентное комплексное сопротивление параллельных ветвей и преобразовываем схему в упрощенный вид, как показано на рис. 3.

Рис. 3. Схема замещения заданной цепи с эквивалентным преобразованием параллельных ветвей

Комплексное входное сопротивление цепи:

ZΣ = Z1 + Z23 = 41 – j18,09 + 1,02 + j5,56 = 42,02 – j12,53 Ом;

ZΣ = z1×e j j = 43,85e –j16,6 ° Ом.

Расчет действующих и мгновенных значений токов во всех ветвях цепи

Преобразуем заданное напряжение источника в комплексную форму U и определяем действующее значение входного тока I1в неразветвленной части цепи:

Падение напряжения на разветвленном участке цепи:

U23 = I1×Z23 = 2,51e j 56,6° ×5,65e j 79,6 ° = 14,17e j 136,2° В.

Действующие значения токов на разветвленных участках цепи:

Мгновенные значения токов i1, i2, i3 определяем по их комплексным действующим значениям I1, I2, I3.

Источник

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения

Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Читайте также:  Как движется ток в параллельной цепи

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

В этих выражениях:

u(t), i(t) – мгновенные значения,

Um, Im – максимальные или амплитудные значения,

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ψu, ψi – начальные фазы,

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

и реактивной проводимостью емкости или емкостной проводимостью BС:

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

ψi = – φ, поэтому i = Im sin(ωt – φ)

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

1. Полное сопротивление Z:

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

3. Полная проводимость Y:

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

Решение типовых задач

Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

Задача 1.1

К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

Решение.

По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

Реактивное сопротивление Х индуктивности L на частоте

Амплитудные значения напряжений uR и uL:

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

Зависимости uR(ωt); uL(ωt); uRL(ωt) представлены на рис. 1.9.

Задача 1.2

К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

С = 79,62 мкФ.

Решение.

Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

Полное сопротивление цепи:

– напряжения на резисторе R: ;

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

Начальная фаза тока i определяется из соотношения . Откуда,

Мгновенные значения тока и напряжений на участках цепи:

Задача 1.3

Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

U = 10 В; I = 2 А; φ = 30 о .

Читайте также:  Преобразователь тока для сварочного аппарата

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение.

Имеем по определению:

Задача 1.4

По цепи по схеме рис. 1.10 действующие значения тока i на частотах

f1 = 500 Гц и f2 = 1000 Гц равны, соответственно, I1 = 1 А и I2 = 1,8 А.

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

Решение.

По определению на частотах f1 и f2 имеем:

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8 ←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Задача 1.5

Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Решение.

Действующее значение тока

Задача 1.6

Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение.

Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

По закону Ома U = IRR = 0,1∙430 = 43 В.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

Задача 1.7

Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Решение.

Определяем действующее значение тока i

Полное сопротивление цепи

Определяем действующее значение напряжения u

Задача 1.8

Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

A → 0,5 A, U → 100 B, W → 30 Вт.

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ˂ Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

Эквивалентное активное сопротивление

Эквивалентное реактивное сопротивление

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ˂ I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

Эквивалентная активная проводимость

Эквивалентная реактивная проводимость

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 84902 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Определить мгновенное значение тока если известны

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.) называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Величина, обратная периоду, есть частота, измеряемая в герцах (Гц):

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01 ¸ 10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ) .

— амплитуда тока;

— амплитуда напряжения;

— амплитуда ЭДС.

Действующее значение переменного тока

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Читайте также:  Частотные преобразователи с питанием от постоянного тока

Изображение синусоидальных ЭДС, напряжений
и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени ( t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

Векторное изображение синусоидально
изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени ( t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы.

На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Представление синусоидальных ЭДС, напряжений
и токов комплексными числами

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

тригонометрической или

алгебраической формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

Комплексное число удобно представить в виде произведения двух комплексных чисел:

Параметр , соответствующий положению вектора для t =0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол w t относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота есть его поворот относительно первоначального положения на угол ± a .

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды и оператора поворота :

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

— то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор с положительной полуосью +1:

Тогда мгновенное значение напряжения:

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при (второй квадрант)

а при (третий квадрант)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока по рис. 5 получим:

Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в раз:

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения

1. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?

2. Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?

3. В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?

4. Для заданных синусоидальных функций ЭДС и тока записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.

Источник