Меню

Определите период переменного тока в россии запишите число т с

§ 42. Получение и передача переменного электрического тока. Трансформатор

Рассмотрим ещё раз получение индукционного тока в катушке с помощью перемещения относительно неё постоянного магнита (см. рис. 119, а). Но теперь будем периодически двигать магнит вверх и вниз в течение нескольких секунд. Мы увидим, что при этом стрелка гальванометра отклоняется от нулевого деления то в одну, то в другую сторону. Это говорит о том, что модуль силы индукционного тока в катушке и направление этого тока периодически меняются.

  • Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Генератор переменного тока: а — внешний вид; б — общий вид на электростанции вместе с паровой турбиной, приводящей ротор генератора во вращение

В осветительной сети наших домов и во многих отраслях промышленности используется именно переменный ток.

В настоящее время для получения переменного тока используют в основном электромеханические индукционные генераторы, т. е. устройства, в которых механическая энергия преобразуется в электрическую. Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции.

В § 39 рассматривался пример получения индукционного тока в плоском контуре при вращении внутри него магнита (см. рис. 121, б). На этом принципе и работает электромеханический генератор переменного тока. Неподвижная часть генератора, аналогичная контуру, называется статором, а вращающаяся, т. е. магнит, — ротором. В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.

Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и пр.). Во внутренней его части прорезаются пазы, в которые витками укладывается толстый медный провод. В витках и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока.

Схема генератора переменного тока

Магнитное поле создаётся ротором (рис. 131, а). Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Ток к этой обмотке подводится через щётки и кольца от постороннего источника постоянного тока.

На рисунке 131, (б) приведена схема генератора переменного тока. Штрихами показано примерное расположение линий индукции магнитного поля ротора. При вращении ротора какой-либо внешней механической силой создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.

На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.

Внешний вид и устройство мощного гидрогенератора

На рисунке 132, а изображён внешний вид мощного гидрогенератора, а на рисунке 132, (б) схематично показано его устройство, где цифрой 1 обозначен статор, цифрой 2 — ротор, а цифрой 3 — водяная турбина.

Ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.

График зависимости силы переменного тока от времени

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз течёт в одну сторону и 50 раз в другую. В некоторых странах (например, США) стандартная частота переменного тока равна 60 Гц.

Сила тока, вырабатываемого генераторами переменного тока, меняется со временем по гармоническому закону (т. е. по закону синуса или косинуса). На рисунке 133 показан график изменения силы тока i со временем t.

Высоковольтные ЛЭП

Для передачи электроэнергии от электростанций в места её потребления служат линии электропередачи (ЛЭП). Чем дальше от электростанции находится потребитель тока, тем больше энергии Q тратится на нагревание проводов и тем меньше доходит до потребителя:

Уменьшение потерь электроэнергии при её передаче от электростанций к потребителям является важной задачей экономики.

Из закона Джоуля—Ленца (Q = I 2 Rt) следует, что уменьшить потери можно за счёт уменьшения сопротивления R проводов и силы тока I в них (что более эффективно, поскольку при уменьшении I в n раз Q уменьшается в n 2 раз).

Сопротивление проводов будет тем меньше, чем больше площадь S их поперечного сечения и чем меньше удельное сопротивление ρ металла, из которого они изготовлены так как . Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Увеличивать толщину проводов экономически невыгодно (ввиду увеличения расхода металла) и неудобно (из-за трудностей при их подвеске).

Павлом Николаевичем Яблочковым

Поэтому существенного снижения потерь Q можно добиться только за счёт уменьшения силы тока I. Но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение U, чтобы не снижать мощность тока Р (так как Р = UI 1 ). Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Читайте также:  Параллельное соединение резисторов зависимость токов

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, предназначенного для увеличения или уменьшения переменного напряжения и силы тока.

Трансформатор был изобретён в 1876 г. русским учёным Павлом Николаевичем Яблочковым. В основе его работы лежит явление электромагнитной индукции. На рисунке 134, (а) показан внешний вид трансформатора, а на рисунке 134, (б) схематично изображены его основные части. Обратите внимание на то, что число витков в обмотках различно: в данном случае N2 > N1.

1 U, I — так называемые действующие значения напряжения и силы переменного тока. Они равны соответственно напряжению и силе постоянного тока, выделяющего в проводнике ежесекундно столько же тепла, что и переменный ток. Действующие значения напряжения и силы переменного тока в раз меньше амплитудных:

Протекающий в первичной обмотке переменный ток создаёт (главным образом в сердечнике) переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле. В результате действия этого поля на концах вторичной обмотки возникает переменное напряжение U2.

Внешний вид и схема устройства повышающего трансформатора

Схема передачи электроэнергии от электростанции к потребителю

Величина U2 определяется из соотношения: