Меню

Опыт электрический ток в металлах 8 класс

Открытый урок физики по теме «Электрический ток в металлах. Действия электрического тока». 8-й класс

Разделы: Физика

Класс: 8

Цель урока: Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.

Задачи урока:

  • Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.
  • Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.
  • Воспитательная – воспитывать чувство любви к своей Родине, формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение .

Оборудование и материалы: источники тока, электрическая лампочка для карманного фонаря, электрический звонок, выключатели, подводящие провода, раствор медно купороса, электромагнит, медная и цинковая пластинки, модель кристаллической решетки, гальванометр.

ТСО: компьютерная презентация, мультимедийный проектор.

Демонстрации:

  1. Сборка простейших электрических цепей.
  2. Выделение меди при электролизе CuSO4.
  3. Действие катушки с током, как электромагнита.
  4. Получение источника тока используя лимон и медную и цинковую пластинку.

План урока.

  1. Актуализация опорных знаний – 10 мин.
  2. Изучение нового материала «Электрический ток в металлах» – 10 мин.
  3. Закрепление – 3 мин.
  4. Минутка отдыха – 1 мин.
  5. Изучение нового материала «Действия электрического тока». 12 мин.
  6. Закрепление – 5 мин.
  7. Домашнее задание – 2 мин.
  8. Итоги урока – 2 мин.

Ход урока

1. Актуализация опорных знаний – 10 мин.

– Здравствуйте ребята .Сегодня мы продолжим изучение темы «электрический ток»

Для вспоминания пройденный темы, давайте ответим на следующие вопросы

1) Что называется электрическим током?

Эталон ответа. Упорядоченное направленное движение частиц.

2) Что необходимо, чтобы в цепи существовал электрический ток или назовите элементы цепи?

Э. ответа. Источник тока, проводники, потребитель тока, и все эти элементы должны быть замкнуты.

3) Работа со схемами.

А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две эл. цепи, схемы которых представлены на экране.

1. Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1)

Эталон ответа. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

Учитель. А чем проводники отличаются от непроводников или изоляторов?

Эталон ответа. Проводники – такие тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. А в изоляторах такие переходы невозможны, и лампа загорается.

Приглашается ученик, который дал правильный ответ и он, устранив разрыв, демонстрирует правильный ответ. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

Эталон ответа. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит.

Приглашается ученик, который дал правильный ответ и он, подсоединив к цепи источник тока, демонстрирует правильный ответ.

Учитель Ребята, мы наблюдали работающий цепь. Скажите, можно ли сказать смотрев на провода, что здесь течет ток?

Ответ нет, потому что мы не видим движение зарядов.

Учитель И так, для подробного получения ответа на этот вопрос, мы перейдем к изучению новой темы .

2. Изучение нового материала «Электрический ток в металлах» – 10 мин.

Слайд Тема нашего урока: «Электрический ток в металлах. Действия электрического тока»

Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением?

Эталон ответа. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд.

Учитель. Из каких материалов выполняется заземление?

Эталон ответа. Заземление выполняют из металла.

Учитель. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Итак, наш разговор пойдет о металлах. Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

Поэтому сегодня, в общем случае можно воспользоваться определением М.В.Ломоносова первый русский ученый – естествоиспытатель мирового значения, добавив к первым двум свойствам, им предложенным, еще три. Вы узнаете все свойства металлов. Начнем знакомство с одним из них – электропроводностью.

Вспомним строение металлов. Модель металла – кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение. (Представлена модель кристаллической решетки, а на экране проецируется изображение модели строения металлов).

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку. Как вам уже известно, в любом металле часть валентных электронов покидает свои места в атоме, в результате чего атом превращается в положительный ион. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны (электронный газ), т.е. не связанные с ядрами своих атомов.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Мы можем предположить, что под действием электрического поля движутся свободные электроны. Но это наше предположение нуждается в доказательстве.

В 1899 г. К. Рикке на трамвайной подстанции в Штуттгарте включил в главный провод, питающий трамвайные линии, последовательно друг другу торцами три тесно прижатых цилиндра; два крайних были медными, а средний – алюминиевым.

Через эти цилиндры более года проходил электрический ток. Произведя тщательный анализ того места, где цилиндры контактировали, К. Рикке не обнаружил в меди атомов алюминия, а в алюминии – атомов меди, т. е. диффузия не произошла. Таким образом, он экспериментально доказал, что при прохождении по проводнику электрического тока ионы не перемещаются. Следовательно, перемещаются одни лишь свободные электроны, а они у всех веществ одинаковые.

Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л.И. Мандельштамом и Н.Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом. Посмотрите рисунок на экране. Слайд

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле – свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся.

электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов, под действием электрического поля

Если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если же в проводнике создано электрическое поле, то электроны, сохраняя свое хаотичное движение, начинают смещаться в сторону положительного полюса источника. Вместе с беспорядочным движением электронов возникает и упорядоченный их перенос – дрейф.

Скорость упорядоченного движения электронов в проводнике под действием электрического поля – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км /с), распространяется по всей длине проводника.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.

Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля – с распространением давления воды. При подъёме воды в водонапорную башню очень быстро по всей водопроводной системе распространяется давление (напор) воды. Когда мы открываем кран, то вода уже находится под давлением и начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, т.к. движение воды происходит с меньшей скоростью, чем распространение давления.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03 с.

Минутка отдыха.

Ребята, однажды великого мыслителя Сократа спросили о том, что, по его мнению, легче всего в жизни? Он ответил, что легче всего – поучать других, а труднее – познать самого себя.

На уроках физики мы говорим о познании природы. Но сегодня давайте лянем « в себя». Как мы воспринимаем окружающий мир? Как художники или как мыслители?

  1. Встаньте, поднимите руки в верх, потянитесь.
  2. Переплетите пальцы рук.
  3. Посмотрите какой палец левой или правой руки оказался у вас вверху? Результат запишите «Л» или «П»
  4. Скрестите руки на груди. («поза Наполеона») Какая рука сверху?
  5. Поаплодируйте. Какая рука сверху?

Учитывая, что результат «ЛЛЛ» соответствует художественному типу личности, а «ППП» – типу мышления.

Читайте также:  Что такое ток повреждения

Какой же тип мышления преобладает у вашего класса?

Несколько «художников», несколько «мыслителей», а большинство ребят – гармонично развитые личности, которым свойственно, как логическое, так и образное мышление.

А теперь можно переходить к познанию внешнего мира.

Электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Изучение нового материала «Действия электрического тока»

Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока. Некоторые из этих действий легко наблюдать на опыте.

Тепловое действие тока. (Слайд)

Химическое действие тока. Химическое действие эл. тока впервые было открыто в 1800 г. (Слайд)

Опыт. Проведем опыт с раствором медного купороса. Два угольных электрода, опускаем в дисцилированную воду замыкаем цепь. Наблюдаем, что Эл. лампочка не загорается. Берем раствор медного купороса и подсоединяем к источнику тока. Эл лампочка загорается.

Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSo4) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов.

Путем электролиза получают алюминий (это единственный промышленный способ его получения), химические чистые металлы, производят никелирование, хромирование, золочение.

Для предохранения металлов от коррозии их поверхность часто покрывают трудно окисляемыми металлами, т. е. производят никелирование или хромирование. Этот процесс называется гальваностегией.

Магнитное действие тока. Слайд

Опыт. Катушку с железным сердечником включаем в цепь и наблюдает притяжение металлических предметов.

Использование магнитного действия тока в гальванометрах.

Гальванометр. Схематическое обозначение

Закрепление изученного материала.

Решаем задачи по сборнику задач В.И. Лукашик

  1. №1248
  2. №1250
  3. ? Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками?

(Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Анализируя ответы учащихся ставим оценки .

Задание на дом. Параграф. 34, 35Л. №1260, 1261. придумать схему управления звонком с двух точек (ребятам).

Источник

Электрический ток в металлах

Свободные электроны в металлах

Вещества, относящиеся к металлам, могут находиться как в твердом, так и в жидком состоянии (ртуть, галлий, цезий и др.). При этом все они являются проводниками электрического тока. Твердые вещества имеют структуру жесткой кристаллической решетки, в узлах которых “сидят” положительно заряженные ионы, совершающие небольшие колебания относительно точки равновесия. В объеме кристалла всегда присутствует большое количество свободных электронов, которые вырвались с орбит атомов в результате механических соударений или воздействия излучений.

Механизм электрического тока в металлах

Рис. 1. Механизм электрического тока в металлах.

Это электронное “облако” движется беспорядочно, хаотично до тех пор, пока к металлу не будет приложено электрическое поле. Электрическое поле E, созданное внешним источником (батареей, аккумулятором), действует на заряд q с силой F:

Под действием этой силы электроны приобретают ускорение в одном направлении и, таким образом, появляется электрический ток в цепи.

Многочисленные наблюдения показали, что при прохождении электрического тока масса проводников и их химический состав не изменяются. Отсюда следует вывод, что ионы металлов, которые составляют основную массу вещества, не принимают участия в переносе электрического заряда.

Опыт Мандельштама и Папалекси

Электронную природу тока в металле первыми экспериментально доказали российские физики Мандельштам и Папалекси в 1913 г. Для того, чтобы выяснить, какие частицы создают электрический ток в металлах, они — без подключения внешнего источника — регистрировали ток в катушке из металлического провода, которую сначала сильно раскручивали вокруг собственной оси, а затем резко останавливали. Поскольку у электрона есть масса, то он должен подчиняться закону инерции. Поэтому в момент остановки атомы решетки останутся на месте, а свободные электроны по инерции, какое-то время, продолжат движение в прежнем направлении. То есть в цепи должен появиться электрический ток. Эксперименты подтвердил это предположение — после остановки катушки исследователи регистрировали бросок тока в цепи.

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Этот эксперимент в 1916 г. повторили американцы Стюарт и Толмен. Им удалось повысить точность измерений и получить отношение заряда электрона eэ к значению массы электрона mэ:

Этот фундаментальный результат совпал с полученными данными из других экспериментов, поставленных на основе измерения других параметров. Впервые эту величину в 1897 г. измерил англичанин Джозеф Томсон по отклонению пучка электронов в зависимости от напряженности электрического поля.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм 2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10 -5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Применение свойств электрического тока в металлах

Физические свойства электрического тока используются в различных областях жизнедеятельности:

  • Способность электрического тока нагревать проводники используется для изготовления нагревательных бытовых и промышленных приборов;
  • Вокруг провода с электрическим током возникает магнитное поле, что позволило создать электродвигатели, без которых сегодня невозможно обойтись;
  • Передача электроэнергии на различные расстояния осуществляется по проводам линий электропередачи (ЛЭП), по которым течет электрический ток.

Применение электрического тока

Рис. 3. Применение электрического тока.

Что мы узнали?

Итак, мы узнали, что электрический ток в металлах создается упорядоченным движением свободных электронов. Экспериментальное доказательство того, что электрический ток в металлах создают электроны, впервые получили российские физики Мандельштам и Папалекси. Физические свойства электрического тока в металлах позволили создать большое количество бытовых и промышленных устройств.

Источник

8 класс. Урок Электрический ток в металлах. Направление электрического тока.
план-конспект урока по физике (8 класс)

Мостовая Наталия Владимировна

Тема урока. Электрический ток в металлах. Направление электрического тока.

Цель урока: Продолжить изучение природы электрического тока в металлах.

План урока.

  1. Актуализация опорных знаний.
  2. Изучение нового материала «Электрический ток в металлах».
  3. Закрепление.
  4. Минутка отдыха.
  5. Изучение нового материала «Направление электрического тока».
  6. Закрепление.
  7. Домашнее задание.
  8. Итоги урока.

Скачать:

Вложение Размер
urok.doc 72.5 КБ
urok_tok_v_metallah_-.ppt 1.11 МБ

Предварительный просмотр:

Электрический ток в металлах. Направление электрического тока.

Цель урока : Продолжить изучение природы электрического тока в металлах.

Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.

Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.

Воспитательная – воспитывать чувство любви к своей Родине, прививать любовь к художественной литературе, формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение.

Оборудование и материалы : Источник тока, эл. лампа, звонок, провода, ключ

ТСО : компьютерная презентация, мультимедийный проектор.

  1. Актуализация опорных знаний.
  2. Изучение нового материала «Электрический ток в металлах».
  3. Закрепление.
  4. Минутка отдыха.
  5. Изучение нового материала «Направление электрического тока».
  6. Закрепление.
  7. Домашнее задание.
  8. Итоги урока.

1. Актуализация опорных знаний.

Здравствуйте ребята наш урок, я хочу начать с такого четверостишья:

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей.

Ребята, знания науки всегда, помогает человеку в жизни, а незнания приводит подчас к трагическим последствиям. Сделайте из этих слов для себя правильные выводы.

В моем четверостишье упоминается о электрических лучах. Как вы думаете, что это такое? (электрический ток)

  1. Что называется электрическим током?

Эталон ответа. Упорядоченное направленное движение частиц.

  1. Что необходимо, чтобы в цепи существовал электрический ток?

Эталон ответа . Источник тока, проводники, потребитель тока, и все эти элементы должны быть замкнуты.

3) Работа со схемами.

А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две эл. цепи, схемы которых представлены на экране.

1. Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1)

Эталон ответа. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

Учитель. А чем проводники отличаются от непроводников или изоляторов?

Эталон ответа. Проводники – такие тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. А в изоляторах такие переходы невозможны, и лампа загорается.

Приглашается ученик, который дал правильный ответ и он, устранив разрыв, демонстрирует правильный ответ. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

Эталон ответа. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит.

Приглашается ученик, который дал правильный ответ и он, подсоединив к цепи источник тока, демонстрирует правильный ответ.

3 . Где надо расположить источник тока, чтобы при замыкании ключа К 1 зазвенел звонок, а при замыкании ключа К 2 загорелась лампа? (Рис. 3)

Эталон ответа. Источник тока необходимо располагать параллельно ветвям, содержащим звонок и лампу.

Приглашается ученик, который дал правильный ответ и, изобразив подсоединение источника тока на схеме, подключает его в цепь. Затем, замыкая поочередно ключ К 1 и К 2 , демонстрирует правильный ответ. Учитель дает задание ученикам вовремя подготовки ответа зарисовать полную схему подключения приборов в тетрадях. (Рис. 4)

Учитель. Хочу вам напомнить, что при работе с электрическими цепями необходимо соблюдать правила по технике безопасности. Недопустимо касаться оголенных проводников, неисправных участков цепи и полюсов источника.

Задача: С какой целью на стыках рельсов электрифицированных железных дорог делают толстые медные перемычки или сваривают рельсы?

Ответ. Рельсы проводят электрический ток и, следовательно, чтобы цепь не была разомкнута, делают медные перемычки или сваривают рельсы.

2.Изучение нового материала «Электрический ток в металлах» — 10 мин .

Тема нашего урока: «Электрический ток в металлах. Направление электрического тока»

Учитель. Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением?

Эталон ответа. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд.

Учитель. Из каких материалов выполняется заземление?

Эталон ответа. Заземление выполняют из металла.

Учитель. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах. Направление электрического тока”. Запишите тему урока в тетрадь.

Итак, наш разговор пойдет о металлах. Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

Поэтому сегодня, в общем случае можно воспользоваться определением М.В.Ломоносова первый русский ученый – естествоиспытатель мирового значения, добавив к первым двум свойствам, им предложенным, еще три. Вы узнаете все свойства металлов. Начнем знакомство с одним из них – электропроводностью.

Металлическими называют решётки, в узлах которых находятся атомы и ионы металла. Для металлов характерны физические свойства: пластичность, ковкость, металлический блеск, высокая электро- и теплопроводность.

Вспомним строение металлов. Модель металла — кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение. (Представлена модель кристаллической решетки, а на экране проецируется изображение модели строения металлов).

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку. Как вам уже известно, в любом металле часть валентных электронов покидает свои места в атоме, в результате чего атом превращается в положительный ион. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны (электронный газ), т.е. не связанные с ядрами своих атомов.
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.
Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Мы можем предположить, что под действием электрического поля движутся свободные электроны. Но это наше предположение нуждается в доказательстве. Мы знаем, что в металле есть свободные электроны, но есть и заряженные ионы кристаллической решетки. А если и они переносят ток?

Для проверки этого предположения В 1899 г. К. Рикке, создатель теории проводимости металлов, поставил такой опыт: на трамвайной подстанции в Штутгарте включил в главный провод, питающий трамвайные линии, последовательно друг другу торцами три тесно прижатых цилиндра; два крайних были медными, а средний — алюминиевым. Через эти цилиндры более года проходил электрический ток. Произведя тщательный анализ того места, где цилиндры контактировали, К. Рикке не обнаружил в меди атомов алюминия, а в алюминии — атомов меди, т. е. диффузия не произошла. Таким образом, он экспериментально, доказал, что при прохождении по проводнику электрического тока ионы не перемещаются. Следовательно, перемещаются одни лишь свободные электроны, а они у всех веществ одинаковые. Итак, электрический ток в металлических проводниках создается упорядоченным движением свободных электронов.

Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л. И. Мандельштамом и Н. Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом.

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле — свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся.

Электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов под действием электрического поля.
Если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если же в проводнике создано электрическое поле, то электроны, сохраняя свое хаотичное движение, начинают смещаться в сторону положительного полюса источника. Вместе с беспорядочным движением электронов возникает и упорядоченный их перенос — дрейф.

Говоря об упорядоченном движении электронов, нельзя не сказать о скорости их движения. Опыт: Обратимся к цепи, собранной по предложенной схеме (открывается часть доски с нарисованной схемой на рис.5):

Замыкаем ключ и лампочка загорается практически сразу. Вот это скорость!

Предполагаете ли вы, что свободный электрон “добежал” от отрицательного полюса источника до лампочки за столь короткий отрезок времени?

Эталон ответа. Необходимо различать понятия: скорость распространения электрического поля и скорость движения конкретных электронов. Скорость распространения электрического поля такая же, как и света в вакууме 300 000 км/с. При создании электрического поля в электрической цепи, одновременно с ним все электроны начинают двигаться в одном направлении по всей длине проводника. И такая скорость упорядоченного движения электронов в металлах примерно равна 1 – 3 мм /с.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03с.

Слайд 12 ( один щелчок мыши)

3. Минутка отдыха .

Ребята, однажды великого мыслителя Сократа спросили о том, что, по его мнению, легче всего в жизни? Он ответил, что легче всего – поучать других, а труднее – познать самого себя.

На уроках физики мы говорим о познании природы. Но сегодня давайте заглянем « в себя». Как мы воспринимаем окружающий мир? Как художники или как мыслители?

  1. Встаньте, поднимите руки вверх, потянитесь.
  2. Переплетите пальцы рук.
  3. Посмотрите, какой палец левой или правой руки оказался у вас вверху? Результат запишите «Л» или «П»
  4. Скрестите руки на груди («поза Наполеона») Какая рука сверху?
  5. Поаплодируйте. Какая рука сверху?

Учитывая, что результат «ЛЛЛ» соответствует художественному типу личности, а «ППП» — типу мышления.

Какой же тип мышления преобладает у вашего класса?

Несколько «художников», несколько «мыслителей», а большинство ребят – гармонично развитые личности, которым свойственно, как логическое, так и образное мышление.

4. Изучение нового материала.

А теперь можно переходить к познанию внешнего мира. Закончили этап — электрический ток в металлах. Переходим к следующему блоку «Направление электрического тока»

Но как быть с выбором направления электрического тока? Наиболее распространенные проводники, которые используются в электрических цепях, это металлы. Электрический ток в металлах, а это упорядоченное движение свободных электронов, следовательно, за направление электрического тока целесообразно принять движение отрицательно заряженных частицы. Однако… Продолжение начатой фразы вы найдете в § 36 учебника. Прочитайте 4 и 5 абзацы. (После прочтения текста учениками). Обратимся к рис. 8 и сделаем вывод : за направление электрического тока принято упорядоченное движение положительно заряженных частиц, т. е. направление движения от положительного полюса источника тока к отрицательному.

Итак, существуют два направления электрического тока

1. Истинное направление. Это направление от минуса источника до его плюса. В этом направлении идут электроны, поэтому направление называется истинным.

Техническое направление противоположно истинному. Это направление от плюса источника до его минуса.

Техническое направление возникло исторически. Когда люди не знали природы тока, то установили, чтобы все показывали одинаково от плюса к минусу. Когда узнали что ток это поток электронов, движущийся от минуса к плюсу, то решили это направление оставить и назвать его техническим и пользоваться им в технике.

Возникает вопрос, когда и каким направлением пользоваться.

Когда речь идет о природе тока, то нужно пользоваться истинным направлением. В остальных случаях пользуются техническим направлением.

Не будет ли недоразумений.

Не будет, так как в технике имеет значение электрическая цепь, а не направление тока в ней.

5. Закрепление изученного материала. Слайд 13

Китайский философ Конфуций как – то сказал, словно для нас с вами

«Хорошо обладать природным дарованием, но упражнения, друзья, дают нам больше, чем природное дарование».

Русская пословица гласит: « Учиться всегда пригодится».

? Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками?

( Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Источник



Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л.И. Мандельштаму и Н.Д. Папалекси В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная

где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный

Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен:

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме

Число таких электронов равно , где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд Отсюда следует:

или

Концентрация n атомов в металлах составляет 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом,

средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE, в результате чего он приобретает ускорение . Поэтому к концу свободного пробега дрейфовая скорость электрона равна

где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа равно половине максимального значения:

Рассмотрим проводник длины l и сечением S с концентрацией электронов n. Ток в проводнике может быть записан в виде:

где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:

а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля-Ленца.

К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

Это соотношение выражает закон Джоуля-Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение , в то время как из эксперимента получается зависимость ρ

T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х.Каммерлинг-Онесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Источник