Меню

Опыты по физике с постоянным током

Система демонстрационных опытов по темам раздела «Постоянный ток и ток в разных средах».

Система демонстрационных опытов по темам раздела «Постоянный ток и ток в разных средах».

1 Действия электрического тока.

hello_html_7b29930.jpg

Тепловое действие тока можно наблюдать, например, присоединив к полюсам источника тока железную или никелиновую проволоку (рис.1). Проволока нагревается и, удлинившись поэтому, слегка провисает. Ее даже можно раскалить докрасна. В электрических лампах, например, тонкая вольфрамовая проволочка накаливайся током до яркого свечения .[5, 10]

hello_html_6894dfa0.jpg hello_html_m884df8b.jpgХимическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ, содержащихся в растворе, которые откладываются на электродах, опущенных в этот растворов. Например, при пропускании тока через раствор медного купороса на отрицательно заряженном электроде выделится чистая медь.

Магнитное действие тока также можно наблюдать на опыте. Для этого медный провод, покрытый изоляционным материалом, нужно намотать на железный гвоздь, а концы провода соединить с источником тока. Когда цепь замкнута, гвоздь становится магнитом (намагничивается) и притягивает небольшие железные предметы: гвоздики, железные стружки, опилки. С исчезновением тока в обмотке (при размыкании цепи) гвоздь размагничивается.

2 Измерение силы тока.

hello_html_4d3c74a1.jpg

В цепи, состоящей из источника тока и ряда проводников, соединенных так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова. Это следует из того, что заряд, проходящий через любое поперечное сечение проводников цепи в 1 с, одинаков. Когда в цепи существует ток, то заряд нигде в проводниках цепи не накапливается, подобно тому как нигде в отдельных частях трубы не собирается вода, когда она течет по трубе. Поэтому при измерении силы тока амперметр можно включать в любое место цепи, состоящей из ряда последовательно соединенных проводников, так как сила тока во всех точках цепи одинакова. Если включить один амперметр в цепь до лампы, другой после, то оба они покажут одинаковую силу тока.

3 Измерение напряжения.

Вольтметр включают иначе, чем амперметр. На рисунке изображена электрическая цепь, в которую включены электрическая лампа, амперметр и вольтметр. На рисунке показана схема такой цепи. Амперметром в этой цепи измеряют силу тока в лампе, для этого он включен в цепь последовательно с ней. Вольтметр должен показывать напряжение, существующее на зажимах лампы. Поэтому его включают в цепь не последовательно с лампой, а так, как показано на рисунке и на схеме. Зажимы вольтметра присоединяют к тем точкам цепи, между которыми надо измерить напряжение. Такое включение прибора называют параллельным. [5]

hello_html_m98d9371.jpghello_html_69b8ad36.jpg

Зависимость силы тока от напряжения. hello_html_7b5a7c38.jpg

Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.

Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

5.Электрическое сопротивление проводников.

Если вместо железной проволоки АВ включить в цепь такой же длины и сечения никелиновую проволоку СД, то сила тока в цепи уменьшится, а если включить медную EF, то сила тока значительно увеличится.

hello_html_m17846c62.jpg

На рисунке изображена электрическая цепь, в которую включен железный проводник АВ. На этой же панели укреплены проводники из никелина и меди, которые поочередно включают в цепь. Напряжение на концах проводников поддерживается постоянным, а сила тока оказывается различной. Значит, сила тока в цепи зависит не только от напряжения, но и от свойств проводников, включенных в цепь. Зависимость силы тока от свойств проводника объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

6.Закон Ома для участка цепи.

Обобщая результаты опытов, приходим к выводу: сила тока в проводнике обратно пропорциональна сопротивлению проводника.

hello_html_m149cfc6c.jpg

7.Расчет сопротивления проводника.

никелиновые проволоки одинаковой толщины, но разной длины;

никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения);

никелиновую и нихромовую проволоки одинаковой длины и толщины.

Силу тока в цепи измеряют амперметром, напряжение — вольтметром.

hello_html_m49b92826.jpg

Зная напряжение на концах проводника и силу тока в нем, по закону Ома можно определить сопротивление каждого из проводников.

Выполнив указанные опыты, мы установим, что:

из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление;

из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока с меньшим поперечным сечением;

никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.

Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника .

8 Соединение проводников.

1) Последовательное 2) Параллельное

соединение: соединение:

hello_html_7ab89ad0.jpghello_html_m4e1e2dc.jpg

Нагревание проводника с током.

hello_html_46cb22a2.jpg

hello_html_m449bd9e4.jpg

Нагретый проводник ярко светится в темном кабинете. Ярко-оранжевая дуга раскаленного электрическим током проводника неизменно вызывает возгласы восторга у учащихся и запоминается ими на всю жизнь.

10.Плавкий предохранитель.

В изолирующих штативах укреплены две полоски алюминиевой фольги. Концы полосок срезаны под углом. Полоски фольги включены в цепь, состоящую из двух параллельно соединенных ламп мощностью 100 и 500 Вт. Мощная лампа имеет отдельный выключатель.

Перед демонстрацией опыта ученикам объясняют назначение плавкого предохранителя как устройства для защиты электрических цепей от перегрузки. Перегрузка может возникнуть из-за включения дополнительных потребителей электроэнергии или из-за короткого замыкания в цепи.

hello_html_m4841f1eb.jpg

11.Контактная электросварка.

hello_html_m276a6e63.jpghello_html_m6a1f952f.jpg

12 Односторонняя проводимость диода.

hello_html_m6fc2f4f7.jpg

Анод демонстрационного вакуумного диода через гальванометр соединяют с положительным полюсом регулируемого источника тока (ВУП-1 или ВУП-2). Катод диода соединяют с отрицательным полюсом источника тока. Отдельными проводами» нить Накала диода подключают к выводам переменного напряжения 6,3 В.

напряжения в анодной цепи диода, отмечают появление тока, проходящего через диод.

Использование двухэлектродной электронной лампы для выпрямления переменного тока.

Читайте также:  Двигатели переменного тока асинхронные с короткозамкнутой обмоткой

Явление односторонней проводимости двухэлектродной электронной лампы применяется для выпрямления переменного тока.

hello_html_408f401c.jpg

14.Зависимость сопротивления металла от температуры.

hello_html_760e3633.jpg

15.Зависимость электропроводности полупроводника от температуры.]

hello_html_64f0c029.jpg

16.Действие автоматического сигнализатора температуры.

hello_html_m2ae78e20.jpg

17. Несамостоятельный разряд.

hello_html_3f8f5246.jpg

Для опыта можно использовать люминесцентную лампу из оборудования физического кабинета даже в том случае, если нити накала лампы перегорели. У лампы с перегоревшими нитями накала штырьки на обоих концах должны быть соединены между собой .

Источник

Опыты с электричеством для детей

Опыты с электричеством для детей

Электричество может показаться детям слишком скучным, если своевременно не продемонстрировать им наглядную сторону данных явлений. Они обладают особой визуализацией. Пока малыши не увидят этого, электрический ток будет для них невнятным нечто, опасным и невидимым. Естественно, что необходимо проводить всё собственными руками, а ребятню усадить в качестве благодарных зрителей. Эксперты блога «ПрофЭлектро» подобрали наиболее яркие опыты, позволяющие наглядно показать, до какой степени интересны окружающие нас физические явления. Мы специально определили наиболее безопасные варианты.

Наэлектризованные воздушные шарики

Статика также даёт возможность наслаждаться всеми прелестями электричества. Сфера является конденсатором, подобно нашей планете, а диэлектрический материал отлично накапливает заряд от трения. Чтобы сделать это, необходимо потереть шарик о голову детей. Волосы будут забавно стоять вертикально. Также можно попробовать нарезать так называемую бумажную лапшу, подобную результатам работы уничтожителя документов. Она будет хорошо прилипать к поверхности.

Наэлектризованные воздушные шарики

Простейший электрический мотор

Для этого понадобится батарейка формата АА, магнит на базе неодима с диаметром не более корпуса элемента питания и легкая медная проволока. Чтобы создать вращение, нужно выгнуть проводник в виде сердца. Место, где сходятся две половинки, будет установлено на плюсовую часть. Минусовое плоское донышко нужно соединить с магнитом. Нижняя часть сердцевидной рамочки изгибается в виде двух полукругов с каждой стороны так, чтобы они немного не соприкасались между собой. Предварительно подготовьте ротор из проволоки, чтобы он хорошо держал равновесие. Дети придут в восторга, когда эта система будет вращаться вокруг своей оси. Скорость вращения напрямую зависит от соотношения мощности элемента питания и массы медной части. Поэтому определенно имеет смысл найти тонкую проволоку. Движение будет продолжаться несколько дней.

Простейший электрический мотор

Графит и светодиод

Постарайтесь запастись источником освещения, обладающим парой ножек. Он должен питаться от постоянного тока напряжением в 9В. Тогда можно будет провести очень впечатляющий эксперимент для маленьких зрителей. Вы просто рисуете какую-то фигурку на бумаге самым мягким простым карандашом так, чтобы на её концах оставалось свободное место под контакты батарейки, а на другом конце – под выходы светодиода. То есть фигурка должна быть нарисована двумя простыми линиями. Но нельзя давать им пересекаться, иначе вы получите воспламенение и короткое замыкание. Просто приложите к рисунку сначала батарейку, а затем светодиод. Очень забавно видеть, как работает цепь без проводов. Но старайтесь покупать именно карандаш 6М, потому что в более твердых версиях часто используется обыкновенный полимерный аналог графита.

Графит и светодиод

Если есть мощный магнит

Попробуйте показать, как работают магнитные поля при помощи старого доброго опыта с металлической пылью или стружкой. Мелкие фрагменты будут выстраиваться в виде незамысловатых линий, точно показывающих распределение основных сил взаимодействия. Между парой мощных магнитов можно собрать цепочку из скрепок или гвоздей, а наличие большого количества экземпляров позволит построить целый город, рассыпающийся при удалении источника генерации постоянного магнитного поля. И не забудьте показать взаимное притяжение с отталкиванием при смене полюсов. Можно создать самостоятельно компас при помощи иголки.

Эксперименты с магнитом

Если фантазия иссякла

Сейчас имеется огромное количество различных игрушек на рынке, обладающих впечатляющим внешним видом только благодаря использованию элементарного электричества, но некоторые из них повторить дома практически не удастся. Вспомните хотя бы знаменитый плазменный шар. Он стоит недорого, зато можно дать детям управлять этими молниями при условии соблюдении необходимых мер безопасности. Устройство может служить в качестве светильника.

Также имеется бесконечное множество развлечений с магнитами. Они имеют также небольшую стоимость, обычно их относят в ассортименте к так называемым развивающим играм. Пояснить магнетизм на их примере значительно проще.

Источник

Занимательные опыты со статическим электричеством

Ольга Чугреева
Занимательные опыты со статическим электричеством

Занимательные опыты со статическим электричеством

Во всех проводимых в этом разделе опытах мы используем статическое электричество. Электричество называют статическим, когда ток, то есть перемещение заряда, отсутствует. Оно образуется за счет трения объектов. Например, шарика и свитера, шарика и волос, шарика и натурального меха. Вместо шарика иногда можно взять гладкий большой кусок янтаря или пластмассовую расческу. Почему мы используем в опытах именно эти предметы? Все предметы состоят из атомов, а в каждом атоме находится поровну протонов и электронов. У протонов заряд — положительный, а у электронов — отрицательный. Когда эти заряды равны, предмет называют нейтральным, или незаряженным. Но есть предметы, например, волосы или шерсть, которые очень легко теряют свои электроны. Если потереть шарик (янтарь, расческу) о такой предмет, часть электронов перейдет с него на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но, если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу.

Опыт №1. Понятие о электрических зарядах.

Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение электрических разрядов.

1. Воздушный шарик.

2. Шерстяной свитер.

Опыт: Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер и попробуем дотронуться шариком до различных предметов в комнате. Получился настоящий фокус!Шарик начинает прилипать буквально ко всем предметам в комнате: к шкафу, к стенке, а самое главное — к ребенку. Почему?

Читайте также:  Номин ток утечки это

Это объясняется тем, что все предметы имеют определенный электрический заряд. Но есть предметы, например — шерсть, которые очень легко теряют свои электроны. В результате контакта между шариком и шерстяным свитером происходит разделение электрических разрядов. Часть электронов с шерсти перейдет на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу. Шарик упадет.

Вывод: В результате контакта между двумя различными предметами возможно разделение электрических разрядов.

Опыт №2. Танцующая фольга.

Цель: Показать, что разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.

1. Тонкая алюминиевая фольга (обертка от шоколада).

2. Ножницы. 3. Пластмассовая расческа. 4. Бумажное полотенце.

Опыт: Нарежем алюминиевую фольгу (блестящую обертку от шоколада или конфет) очень узкими и длинными полосками. Высыпем полоски фольги на бумажное полотенце. Проведем несколько раз пластмассовой расческой по своим волосам, а затем поднесем ее вплотную к полоскам фольги. Полоски начнут «танцевать». Почему так происходит? Волосы. о которые мы потерли пластмассовую расческу, очень легко теряют свои электроны. Их часть перешла на расческу, и она приобрела отрицательный статический заряд. Когда мы приблизили расческу к полоскам фольги, электроны в ней начали отталкиваться от электронов расчески и перемещаться на противоположную сторону полоски. Таким образом, одна сторона полоски оказалась заряжена положительно, и расческа начала притягивать ее к себе. Другая сторона полоски приобрела отрицательный заряд. легкая полоска фольги, притягиваясь, поднимается в воздух, переворачивается и оказывается повернутой к расческе другой стороной, с отрицательным зарядом. В этот момент она отталкивается от расчески. Процесс притягивания и отталкивания полосок идет непрерывно, создается впечатление, что «фольга танцует».

Вывод: Разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.

Опыт №3. Прыгающие рисовые хлопья.

Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.

1. Чайная ложка хрустящих рисовых хлопьев.

2. Бумажное полотенце.

3. Воздушный шарик.

4. Шерстяной свитер.

Опыт: Постелим на столе бумажное полотенце и насыплем на него рисовые хлопья. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к хлопьям, не касаясь их. Хлопья начинают подпрыгивать и приклеиваться к шарику. Почему? В результате контакта между шариком и шерстяным свитером произошло разделение статических электрических зарядов. Часть электронов с шерсти перешло на шарик, и он приобрел отрицательный электрический заряд. Когда мы поднесли шарик к хлопьям, электроны в них начали отталкиваться от электронов шарика и перемещаться на противоположную сторону. Таким образом, верхняя сторона хлопьев, обращенная к шарику, оказалась заряжена положительно, и шарик начал притягивать легкие хлопья к себе.

Вывод: В результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.

Опыт №4. Способ разделения перемешанных соли и перца.

Цель: Показать, что в результате контакта не во всех предметах возможно разделение статических электрических разрядов.

1. Чайная ложка молотого перца.

2. Чайная ложка соли.

3. Бумажное полотенце.

4. Воздушный шарик.

5. Шерстяной свитер.

Опыт: Расстелим на столе бумажное полотенце. Высыплем на него перец и соль и тщательно их перемешаем. Можно ли теперь разделить соль и перец? Очевидно, что сделать это весьма затруднительно! Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к смеси соли и перца. Произойдет чудо! Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. Следовательно, часть перчинок, ближайшая к шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах. Соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.

Вывод: В результате контакта не во всех предметах возможно разделение статических электрических разрядов.

Опыт №5. Гибкая вода.

Цель: Показать, что в воде электроны свободно перемещаются.

1. Раковина и водопроводный кран.

2. Воздушный шарик.

3. Шерстяной свитер.

Опыт: Откроем водопроводный кран таким образом, чтобы струя воды была очень тонкой. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к струйке воды. Струя воды отклонится в сторону шарика. Электроны с шерстяного свитера при трении переходят на шарик и придают ему отрицательный заряд. Этот заряд отталкивает от себя электроны, находящиеся в воде, и они перемещаются в ту часть струи, которая дальше всего от шарика. Ближе к шарику в струе воды возникает положительный заряд, и отрицательно заряженный шарик тянет ее к себе. Чтобы перемещение струи было видимым, она должна быть тонкой. Статическое электричество, скапливающееся на шарике, относительно мало, и ему не под силу переместить большое количество воды. Если струйка воды коснется шарика, он потеряет свой заряд. Лишние электроны перейдут в воду; как шарик, так и вода станут электрически нейтральными, поэтому струйка снова потечет ровно.

Вывод: В воде электроны могут свободно перемещаться.

Опыты с электричеством Опыты. Как рассказать детям про электричество без скуки? Конечно посредством опытов! Особенно про неопасное электричество, статическое.

Читайте также:  Сила тока зарядки внутреннее сопротивление

Долгосрочный проект экспериментальной деятельности в средней группе детского сада «Занимательные опыты и эксперименты»Долгосрочный проект экспериментальной деятельности в средней группе детского сада «Занимательные опыты и эксперименты» Долгосрочный проект экспериментальной деятельности в средней группе детского сада «Занимательные опыты и эксперименты для детей» Тип проекта:.

Консультация для родителей «Занимательные опыты и эксперименты с детьми» МАДОУ № 218 «Детский сад общеразвивающего вида с приоритетным осуществлением деятельности по художественно-эстетическому направлению развития.

Мастер-класс «Занимательные опыты и эксперименты в непосредственно образовательной деятельности»Мастер-класс «Занимательные опыты и эксперименты в непосредственно образовательной деятельности» Мастер – класс «Занимательные опыты и эксперименты в непосредственно образовательной деятельности»Цель мастер-класса: обучить участников.

Папка по самообразованию «Хочу все знать». Занимательные опыты и эксперименты для детей Люди, научившиеся… наблюдениям и опытам, приобретают способность сами ставить вопросы и получать на них фактические ответы, оказываясь.

«Занимательные опыты». Проект по познавательно-исследовательской деятельности«Занимательные опыты». Проект по познавательно-исследовательской деятельности Проект по познавательно- исследовательской деятельности. Тема: «занимательные опыты» Возраст детей: 3-4 года Срок реализации: 4 месяца Участники.

Проект «Занимательные опыты и эксперименты с неживой природой» Проект «Занимательные опыты и эксперименты с неживой природой» Тип проекта: исследовательски-творческий. Актуальность проекта: Мир вокруг.

Буклет для родителей на тему «Занимательные опыты с детьми в домашних условиях»Буклет для родителей на тему «Занимательные опыты с детьми в домашних условиях» Буклет «Занимательные опыты с детьми в домашних условиях» Как обуздать кипучую энергию и неуемную любознательность малыша? Как максимально.

Консультация «Занимательные опыты на кухне» Живые дрожжи Известная русская пословица гласит: «Изба красна не углами, а пирогами». Пироги мы, правда, печь не будем. Хотя, почему и нет?.

Знакомство дошкольников со статическим электричеством посредством опытно-экспериментальной деятельности Список опытов: 1. Шарики на стене 2. Шарики поссорились 3. Шарики подружились 4. Бумажное конфетти 5. Гибкая вода 6. Электричество в голове.

Источник



Опыты по физике с постоянным током

Подробности Просмотров: 436

ОПЫТЫ СО СКОТЧЕМ


Опыт 1

Как расстояние между заряженными телами влияет на силу отталкивания одинаковых электрических зарядов?
Положите линейку на край стола. Отрежьте кусок скотча длиной 12,5 см. Приклейте кусок ленты 10 см к столу, а остальная часть должна свешиваться с его края. Рядом с первым таким же образом приклейте второй кусок скотча. На острый кончик одного карандаша по часовой стрелке намотайте свободный конец первого куска скотча. На острый кончик другого карандаша против часовой стрелки намотайте неприклеенный остаток второго куска скотча.

Быстро подняв карандаши, зарядите оба куска скотча, оторвав их от стола. Сразу же после этого расположите карандаши параллельно столу так, чтобы ленты скотча свешивались с них и указывали на начало и конец линейки. При этом липкие стороны скотча должны смотреть друг на друга. Держите карандаш, который расположился над нулевой отметкой линейки, неподвижным.

Второй карандаш медленно двигайте по направлению к первому. Остановитесь в тот момент, когда вы заметите движение кусочков скотча друг относительно друга из-за их отталкивания.


Опыт 2

Влияет ли расстояние на силу притяжения между разноименными зарядами?
Чтобы получить разноименные заряды на кусочках скотча, поступите следующим образом. Вначале оторвите один кусок прозрачной ленты длиной примерно 12,5 см. Намотайте 2,5 см ленты на заостренный кончик карандаша. Положите карандаш с намотанной на него лентой на стол, гладкой стороной к столу. Возьмите кусок второй ленты, также длиной 12,5 см, и слегка намотайте на второй карандаш. Наложите гладкую сторону второй ленты на липкую сторону первой ленты.

Удерживая первый карандаш с лентой на столе, потяните за второй и оторвите верхнюю ленту от нижней. Сразу же после этого повторите первоначальный опыт и измерьте расстояние, на котором возникает сила притяжения между кусками скотча.

ВЫЗЫВАЕМ МОЛНИЮ

Возьмите три сухих стеклянных стакана, прогрейте их, поставьте на стол и накройте сверху металлическим чайным подносом, тоже слегка прогретым. Наэлектризуйте трением газетный лист, сложите его пополам, снова натрите и положите на поднос (можно взять и наэлектризовать вместо газеты полиэтиленовый пакет). Не касайтесь руками противня!

.

Теперь поднесите к противню какой-нибудь металлический предмет — ключ или чайную ложку. Между подносом и ключом проскочит длинная искра и раздастся треск.
Сняв газету, снова получите при приближении ключа к подносу тот же эффект. Если несколько раз класть газету на поднос, искра снова извлечется, каждый раз уменьшаясь в длине и яркости.
Искра проскочит от противня к ключу, именно так молния проскакивает от облака к громоотводу.

ОГНИ «СВЯТОГО ЭЛЬМА»

Покажите своим друзьям оригинальное явление—свечение на остриях предметов (эльмовы огни).
Около двух тысяч лет назад римский полководец Юлий Цезарь наблюдал такое свечение на остриях копий своих солдат. Электрическое свечение на вершинах мачт и рей судов наблюдали мореплаватели Колумб и Магеллан. В горах при сухом, разреженном воздухе свечение наблюдалось на людях, на их волосах, шапках, ушах.

К сильно наэлектризованной трением газете, полуотделенной от печки, поднесите острия разомкнутых ножниц или пальцы рук. Вы увидите искры, проскакивающие на значительное расстояние, в несколько сантиметров.
Острия ножниц увенчаются пучками синекрасных нитей.
Будет раздаваться протяжное шипение.

ТЕПЛО И ТОК

Чтобы продемонстрировать, как пламя делает воздух проводником электричества, наэлектризуйте две полоски бумаги, протаскивая их между пальцами. Получив одноименный заряд, они станут отталкивать друг друга.

Но если вы поднесете полоски ближе к пламени свечи, они сблизятся, так как заряд с них будет уходить. Заэкранируйте пламя с помощью проволочной сетки — и полоски бумаги не сблизятся.


РИСУЕТ ЭЛЕКТРИЧЕСКИЙ ТОК

Смочите белую тряпочку в воде, содержащей немного крахмала и йодистого калия, затем отожмите ее и расстелите на перевернутую сковородку.

Для опыта с постоянным током используйте батарею из нескольких сухих элементов. Соедините отрицательный полюс батареи со сковородкой. После этого ведите по тряпочке оголенным концом провода, подсоединенного к положительному полюсу батареи. Конец начертит сплошную линию, так как электрический ток разлагает на влажной тряпке йодистый калий и освобожденный иод вступает в реакцию с крахмалом.

Для опыта с переменным током используйте небольшой понижающий трансформатор и повторите эксперимент. В этом случае конец провода прочертит прерывистую линию с неокрашенными разрывами между темными черточками.

Источник: Дж. Ванклив «Занимательные опыты по физике» и др.

Источник