Меню

Основные преимущества асинхронных двигателей по сравнению с двигателями постоянного тока

Чем отличается синхронный двигатель от асинхронного

Николай ПетровичАвтор: Николай Петрович

Чем отличается синхронный двигатель от асинхронного

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вам электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.
  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь эля этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.
Читайте также:  Конкретные случаи поражения током

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Источник

Преимущества и недостатки асинхронного двигателя

Подавляющее большинство электродвигателей, используемых в промышленности – асинхронные двигатели с короткозамкнутым ротором. В новом оборудовании их доля составляет более 95%, остальное – серводвигатели, шаговые двигатели, щеточные двигатели постоянного тока и некоторые другие специфические виды приводов.

Преимущества асинхронного двигателя

Конструкция. По сравнению с другими типами электродвигателей асинхронный двигатель имеет наиболее простую конструкцию. С одной стороны это объясняется использованием стандартной трехфазной системы электроснабжения, с другой – принципом действия агрегата. Данная особенность обуславливает еще одно важное преимущество — невысокую цену асинхронных приводов. Среди двигателей разных типов одинаковой мощности асинхронный будет самым дешевым.

Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не нужны дополнительные элементы и преобразования. Вращение поля внутри статора и, как следствие, вращение ротора обусловлены самой конструкцией асинхронного двигателя. Достаточно обеспечить подачу напряжения через коммутационный аппарат (контактор или пускатель), и двигатель будет работать.

Эксплуатация. Затраты на эксплуатацию асинхронного электродвигателя крайне малы, а обслуживание не представляет никаких сложностей. Нужно лишь время от время проводить чистку от пыли и по необходимости протягивать контакты подключения. При правильной установке и эксплуатации двигателя замена подшипников производится раз в 15-20 лет.

Недостатки асинхронных двигателей

Скорость вращения ротора. Скорость вращения вала двигателя зависит от частоты питающей сети (стандартные значения в промышленности – 50 и 60 Гц) и от количества полюсов обмоток статора.

Это можно считать недостатком в том случае, когда необходимо в процессе работы менять скорость вращения. Для решения данной проблемы были разработаны многоскоростные асинхронные двигатели, у которых имеется возможность переключения обмоток.

Кроме того, в современном оборудовании управление скоростью реализуется за счет преобразователей частоты.

Скольжение. Эффект скольжения проявляется в том, что частота вращения ротора всегда будет меньше частоты вращения поля внутри статора. Это заложено в принцип работы асинхронного двигателя и отражено в его названии. Скольжение также зависит от механической нагрузки на валу.

При необходимости скольжение можно скомпенсировать, а скорость вращения сделать независимой от нагрузки при помощи преобразователя частоты.

Величина напряжения питания. В сырых и влажных помещениях, где действуют повышенные требования к электробезопасности, применение асинхронного электродвигателя может быть невозможным. Дело в том, что из-за конструктивных особенностей такие двигатели практически не производятся на напряжение питания менее 220 В. В таких случаях применяют приводы постоянного тока, рассчитанные на напряжение 48 В и менее, либо используют гидравлические или пневматические приводы.

Чувствительность к напряжению питания. При отклонении напряжения питания более чем на 5% параметры двигателя могут отличаться от номинальных, а сам агрегат может перегреваться. Кроме того, при понижении напряжения падает момент электродвигателя, который квадратически зависит от напряжения.

При использовании преобразователя частоты скорость вращения меняется путем изменения величины и частоты питающего напряжения. Принципиально, что отношение напряжения к частоте должно быть константой.

Пусковой ток. Большой пусковой ток – проблема асинхронных двигателей мощностью более 10 кВт. При пуске ток может превышать номинальный в 5-8 раз и длиться несколько секунд. Из-за этого негативного эффекта мощные двигатели нежелательно подключать напрямую.

Чаще всего для понижения пускового тока применяют схему «Звезда-Треугольник», устройства плавного пуска и преобразователи частоты. Также можно использовать асинхронные двигатели с фазным ротором.

Пусковой момент. В силу электрических и механических переходных процессов в момент пуска двигатель обладает крайне низким КПД и большой реактивностью. Из-за низкого пускового момента привод может не справиться с началом вращения тяжелых механизмов. Этот же недостаток приводит к нагреву двигателя при пуске. Отсюда возникает другая проблема – ограничение количества пусков в единицу времени.

При использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения.

Вывод

Плюсы асинхронных двигателей значительно перевешивают минусы. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска.

Источник

Опишите и объясните устройство коллекторной машины постоянного тока. Укажите преимущества и недостатки двигателя постоянного тока по сравнению с асинхронным двигателем.

Опишите и объясните устройство коллекторной машины постоянного тока. Укажите преимущества и недостатки двигателя постоянного тока по сравнению с асинхронным двигателем.

Основные части машины – статор и якорь.

Статор-состоит из станины и главных полюсов. Станина служит для крепления полюсов и подшипниковых щитов. Кроме того, через неё замыкается магнитный поток главных полюсов.

Станину и полюса изготавливают из стали. Станина — из трубы (цельная), из листовой стали (сварная), и разъёмная – для крупных машин.

Главные полюсы – для создания в машине магнитного поля возбуждения. Есть и другие составляющие магнитного поля.

Состоит из сердечника и полюсной катушки. Сторона полюса, обращённая к якорю, имеет полюсный наконечник. Его форма задаёт распределение магнитного поля в зазоре.

Сердечник выполняют шихтованным, то есть из отдельных стальных пластин толщиной 1-2 мм, скреплённых вместе. Это делается для предотвращения протекания вихревых токов.

Обмотка полюса может быть каркасной и бескаркасной в машинах малой мощности.

Якорь — состоит из вала, сердечника с обмоткой и коллектора.

Сердечник шихтованный, листы стали изолированы специальным лаком (ток в проводниках якоря переменный). На поверхности якоря прорезаны продольные пазы, в которые укладывается обмотка.

Обмотка выполняется медным проводом круглого или прямоугольного сечения. Пазы после укладки обмотки закрывают специальными клиньями.

Коллектор — механический преобразователь переменного тока в постоянный и наоборот. Он состоит из пластин, соединенных с проводниками обмотки ротора и щёток, наложенных на коллекторные пластины. Коллекторы выполняются двух видов – на пластмассе и с конусными шайбами.

Щётки обеспечивают контакт с коллектором. Располагаются в щёткодержателях. Часто щётки делают из графита.

Давление пружины на щётку должно быть отрегулировано. Если оно недостаточное, то щётка может искрить. Если оно чрезмерное, то щётка сотрётся и коллектор перегреется.

Двигатель постоянного тока (ДПТ) в сравнении с асинхронным двигателем (АД).

— выше по стоимости;

— частота вращения у АД ограничена сверху — 3000 мин -1 , при частоте 50 Гц. ДПТ теоретически может развивать любую частоту вращения;

— механическая характеристика у него значительно лучше (жестче), чем у АД;

— возможности регулирования частоты вращения лучше, чем у АД.

В чем сущность явления реакции якоря машины постоянного тока? Укажите меры устранения влияния реакции якоря.

Читайте также:  Устройство для регулировки сварочного тока

При работе машины на холостом ходу МДС якоря практически отсутствует, так как в нём нет тока. При работе машины с нагрузкой в якоре появляется ток и наводит своё магнитное поле. Взаимодействие этого магнитного поля с полем полюсов возбуждения называется реакцией якоря.

Реакция якоря искажает магнитное поле машины и делает его несимметричным относительно полюсов.

При этом физическая нейтраль поворачивается относительно геометрической на некоторый угол. Чем больше нагрузка машины тем больше угол смещения физической нейтрали.

При работе машины в режиме генератора физическая нейтраль смещается по направлению движения якоря, при работе двигателем – наоборот.

Искажение поля машины нежелательно и может привести к искрению на коллекторе, так как магнитная индукция в некоторых участках может возрастать, приводя к повышению напряжения между коллекторными пластинами.

Для уменьшения вредного действия реакции якоря применяют компенсационную обмотку.

Для неё на полюсах делают специальные пазы. Компенсационная обмотка включается последовательно с обмоткой якоря. При этом МДС КО должна быть направлена противоположно МДС якоря, чтоб скомпенсировать её вредное воздействие. Линейная нагрузка КО должна быть равна линейной нагрузке якоря.

В межполюсном пространстве реакция якоря остаётся нескомпенсированной. В связи с этим в машине могут быть установлены дополнительные полюса.

Компенсационная обмотка удорожает и утяжеляет машину, поэтому её применяют только в мощных ответственных машинах.

Ещё одним способом уменьшения реакции якоря является увеличение воздушного зазора под полюсами. Однако, в этом случае ослабляется и поле возбуждения, поэтому МДС возбуждения придётся наращивать.

Опишите и объясните назначение и устройство асинхронного двигателя. Укажите достоинства и недостатки асинхронного двигателя с короткозамкнутым и асинхронного двигателя с фазным ротором.

Асинхронные двигатели со­ставляют основу совре­менного электропривода. Об­ласти применения асинхрон­ных двигателей весьма широ­кие — от привода устройств автоматики и бытовых элек­троприборов до привода круп­ного горного оборудования (экскаваторов, дробилок, мель­ниц и т. п.)

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели сфазным ротором.

Асинхронный двигатель состо­ит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора.

Статор — состоит из корпуса и сердечникас трехфазной обмоткой. Корпус дви­гателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали покрыты сло­ем изоляционного лака. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположена обмотка статора. Концы обмоток фаз выводят на зажимы коробки выводов.

Ротор — состоит из вала и сердечника с короткозамкнутой или фазной обмоткой. Сердечник ротора имеет шихтованную конструкцию.

Короткозамкнутая об­мотка ротора, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных) стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами. В большинстве двигателей к.з. об­мотка ротора выполняется за­ливкой собранного сердеч­ника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отли­ваются короткозамыкающие кольца и вентиляционные лопатки.

Фазную об­мотку ротора выполняют аналогично об­мотке статора. Эту обмотку соединяют звездой, а ее концы при­соединяют к трем контактным кольцам, расположенным на ва­лу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на ка­ждое контактное кольцо накладывают обычно две щетки, распола­гаемые в щеткодержателях. Каждый щеткодержатель снабжен пружинами, обес­печивающими прижатие щеток к контактному кольцу с определенным усилием.

На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные.

Монтаж двигателя в месте его установки осуществляется посредством лап.

Асинхронные двигатели с фазным ротором имеют более сложную конструк­цию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором.

Опишите и объясните устройство коллекторной машины постоянного тока. Укажите преимущества и недостатки двигателя постоянного тока по сравнению с асинхронным двигателем.

Основные части машины – статор и якорь.

Статор-состоит из станины и главных полюсов. Станина служит для крепления полюсов и подшипниковых щитов. Кроме того, через неё замыкается магнитный поток главных полюсов.

Станину и полюса изготавливают из стали. Станина — из трубы (цельная), из листовой стали (сварная), и разъёмная – для крупных машин.

Главные полюсы – для создания в машине магнитного поля возбуждения. Есть и другие составляющие магнитного поля.

Состоит из сердечника и полюсной катушки. Сторона полюса, обращённая к якорю, имеет полюсный наконечник. Его форма задаёт распределение магнитного поля в зазоре.

Сердечник выполняют шихтованным, то есть из отдельных стальных пластин толщиной 1-2 мм, скреплённых вместе. Это делается для предотвращения протекания вихревых токов.

Обмотка полюса может быть каркасной и бескаркасной в машинах малой мощности.

Якорь — состоит из вала, сердечника с обмоткой и коллектора.

Сердечник шихтованный, листы стали изолированы специальным лаком (ток в проводниках якоря переменный). На поверхности якоря прорезаны продольные пазы, в которые укладывается обмотка.

Обмотка выполняется медным проводом круглого или прямоугольного сечения. Пазы после укладки обмотки закрывают специальными клиньями.

Коллектор — механический преобразователь переменного тока в постоянный и наоборот. Он состоит из пластин, соединенных с проводниками обмотки ротора и щёток, наложенных на коллекторные пластины. Коллекторы выполняются двух видов – на пластмассе и с конусными шайбами.

Щётки обеспечивают контакт с коллектором. Располагаются в щёткодержателях. Часто щётки делают из графита.

Давление пружины на щётку должно быть отрегулировано. Если оно недостаточное, то щётка может искрить. Если оно чрезмерное, то щётка сотрётся и коллектор перегреется.

Двигатель постоянного тока (ДПТ) в сравнении с асинхронным двигателем (АД).

— выше по стоимости;

— частота вращения у АД ограничена сверху — 3000 мин -1 , при частоте 50 Гц. ДПТ теоретически может развивать любую частоту вращения;

— механическая характеристика у него значительно лучше (жестче), чем у АД;

— возможности регулирования частоты вращения лучше, чем у АД.

Источник



Двигатель однофазный переменного тока – принцип работы и устройство агрегата

Электрик в доме

Энциклопедия об электричестве от А до Я

Найдите лучшего мастера или фирму в своем городе


Простое и крайне надежное устройство

Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.

Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.

  • Основная информация Принцип действия однофазного двигателя
  • Подключение двигателя
  • Строение асинхронного однофазного двигателя
      Асинхронный двигатель
  • Что происходит в обмотках при включении

    Разные типы двигателя

    В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.

    Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.

    В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.

    Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.

    Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.

    Читайте также:  Векторный преобразователь частоты тока

    Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.

    Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:

    • силу тяготения;
    • трение качения (если используется шариковый или роликовый подшипник);
    • трение скольжения (если в качестве подшипника применяется бронзовая втулка);
    • силу противодействия приводимого в движение оборудования.

    Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.

    В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.

    Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».

    Строение асинхронного двигателя Схемы подключений

    Система управления трёхфазным двигателем (инвертор)

    Выше, мы провели очень краткий обобщающий обзор по трёхфазному току и трёхфазному асинхронному двигателю. На самом деле, в электротехнике этот материал занимает очень большой раздел, с описанием всех физических процессов трёхфазной системы.

    Как же работает асинхронный трёхфазный двигатель в бытовой стиральной машине, которая подключена к однофазной сети с переменным напряжением 220 вольт?

    Для того, чтобы трёхфазный двигатель максимально эффективно работал в однофазной сети, применяют относительно сложный электронный преобразователь, который называют — инвертор. Структурная схема инвертора представлена ниже на (Рис.4).

    Рис.4 Структурная схема инверторного преобразователя
    Данный преобразователь имеет ярко выраженное звено постоянного тока. Переменное напряжение сети преобразуется при помощи диодного моста в постоянное, сглаживается индуктивностью (L) и ёмкостью (C), термистор (NTC) служит для защиты схемы от токовых перегрузок. Индуктивность и ёмкость в выпрямителе служат также фильтром, который защищает сеть от пульсаций при коммутации двигателя.

    От переменной сети так же работает импульсный блок питания, который формирует пониженное постоянное напряжение различных значений для питания системы управления. С выхода выпрямителя постоянное напряжение поступает на силовую часть инвертора построенную на IGBT ( Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором ). На структурной схеме IGBT позиционированы как Q1, Q2, Q3, Q4, Q5, Q6. В корпус данных транзисторов интегрирован диод включённый между цепью эмиттера и коллектора, который защищает транзистор от излишних токовых перегрузок возникающих при коммутации обмоток электродвигателя.

    В инверторе осуществляется преобрaзовaние постоянного нaпряжения в трехфaзное (или однофaзное) импульсное нaпряжение изменяемой aмплитуды и чaстоты. По сигнaлaм системы упрaвления, кaждaя обмоткa электрического двигaтеля подсоединяется через соответствующие силовые трaнзисторы инверторa к положительному и отрицaтельному полюсaм звенa постоянного токa. Сигналы управления поступают на затворы транзисторов с драйверов (микросхем управления) IR1, IR2, IR3.

    Сигнал на драйверы приходит с цифрового сигнального процессора ( DSP-Digital signal processor ) системы управления. Такие процессоры специально разработаны для управления двигателями. Длительность подключения кaждой обмотки в пределaх периодa следовaния импульсов модулируется по синусоидaльному зaкону. Чем выше частота преключения транзисторов, тем выше скорость вращения ротора трёхфазного двигателя, поэтому этот метод управления двигателя называют частотным.

    Реверсивное вращение двигателя осуществляется за счёт изменения порядка включения транзисторов инвертора.

    Алгоритм системы управления двигателем заложен в цифровом сигнальном процессоре.

    Тахогенератор (Т) (Рис.4) расположенный на валу двигателя является звеном обратной связи между двигателем и блоком управления, благодаря чему, поддерживается необходимая стабильная скорость вращения двигателя на различных этапах работы стиральной машины. По сигналу с тахогенератора определятся дисбаланс барабана на стадии отжима, а в некоторых моделях стиральных машин происходит даже примерное взвешивание белья, за счёт сравнения характера сигналов тахогенератора при пустом и заполненным бельём барабане.

    Подобные критерии сигналов тахогенератора, записаны в программе процессора системы управления двигателем или в микросхеме памяти блока управления.

    В качестве дополнения, ко всему описанному в этом пункте, представим внешний вид и расположение некоторых компонентов инверторных блоков управления для стиральных машин.

    Существует три основных вида:

    1.Единый блок управления (инвертор и управление остальными элементами стиральной машины совмещены в общий модуль) (Фото 1)

    2.Отдельный блок для управления 3-х фазным двигателем (Фото 2)

    3.Блок управления (инвертор) расположен на самом двигателе

    Фото 1. Единый блок управления стиральной машины Ariston

    Фото 2. Отдельный блок для управления 3-х фазным двигателем

    Преимущества асинхронных двигателей

    Заложенный в асинхронный двигатель принцип работы даёт ряд преимуществ этому устройству:

    1. Простое устройство делает таковой экономичным в производстве.
    2. Низкое потребление энергии приводит к экономичности устройств, оснащённых таким двигателем.
    3. Универсальность применения в аппаратах, где не требуется точное поддержание частоты вращения или существует схема управления с обратной связью, обеспечивающая вращение с заданной частотой.
    4. Высокая надёжность в работе.
    5. Асинхронный двигатель может работать при однофазном подключении.

    Ключевые преимущества

    Преимущества эксплуатации асинхронных электродвигателей (АД) состоят в следующем:

    • Возможность прямого подключения к питающей сети без пускорегулирующих приборов при коэффициенте загрузки ≈1.
    • Самостоятельный запуск группы асинхронных двигателей одной или нескольких питающих секций при кратковременном обесточивании и последующем возобновлении питания под воздействием станционной автоматики.
    • Простота обслуживания и эксплуатации, доступная цена, высокая надежность, определяющая широкое применение в промышленности с целью привода механизмов, устойчивых к перепадам электроэнергии, пусковых показателей, скольжения.
    • Безотказная работа на участках, размещенных на высоте над уровнем моря 1 км, при диапазоне температур – 40°С и +40 °С, влажности воздуха при +25°С не более 98%, запыленности — 10 мг/м3.
    • Способность принимать различные механические перегрузки без существенных изменений КПД или нарушения стабильности работы.
    • Полная автоматизация работы.
    • Отсутствие необходимости проводить сложное и дорогостоящее обслуживание.
    • Асинхронным двигателем проводят комплектацию редукторов (червячных и цилиндрических). Механизм способствует уменьшению угловых скоростей вала и повышению крутящих моментов.
    • Широкий выбор конструкций. В зависимости от типа обмотки, различают асинхронные электродвигатели с короткозамкнутым и фазным ротором (с контактными кольцами).

    По количеству используемых фаз устройства разделяют на одно-, двух-, трехфазные варианты.

    Трехфазная обмотка обеспечивает лучшие пусковые характеристики и стабильную работу. Двухфазные электродвигатели оснащены двумя перпендикулярными обмотками статора, используемыми в однофазных сетях — одну обмотку соединяют напрямую с фазой, вторую питают фазосдвигающим конденсатором. Однофазный электродвигатель работает от пусковой катушки индуктивности, подключенной кратковременно через конденсатор к сети или замкнутой накоротко. Маломощные приборы выступают оптимальным вариантом для питания бытовых приборов.

    Трехфазный асинхронный двигатель

    Трехфазный асинхронный двигатель

    Недостатки асинхронных двигателей

    Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

    Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

    Однофазное подключение электродвигателя

    В наших домашних приборах чаще всего можно встретить всё тот же асинхронный прибор. Но как же он «понимает», в какую сторону ему начать вращение при его запуске, если на него заводятся только одна фаза и ноль? В такой асинхронный двигатель принцип действия заложен такой же, как и у трёхфазного – вращение магнитного поля. Для этого у каждого двигателя есть ещё один контакт – пусковой.

    Статор имеет две обмотки, между которыми выдерживается угол 90°. Обе группы катушек подключены к одной и той же фазе, однако, чтобы обеспечить сдвиг на те же самые 90° между обмотками, одна из них подключается через конденсатор. Это заставляет магнитное поле вращаться.

    Подобные двигатели используются, например, в кофемолках или соковыжималках. Можно слышать, как изменяется звук асинхронного двигателя в этих приборах, когда они работают под нагрузкой. На холостом ходу частота вращения ротора у них явно выше.

    Подводя итог важно сказать, что асинхронные электродвигатели обрели большую популярность. Конечно, нельзя не забывать о некоторых недостатках. Однако все они перекрываются благодаря великому множеству достоинств.

    Источник