Меню

Оценит опасность поражения током при замыкании

ОЦЕНКА ОПАСНОСТИ ПОРАЖЕНИЯ ТОКОМ В ТРЁХФАЗНЫХ

ЭЛЕКТРИЧЕСКИХ СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В.

Оценить опасность прикосновения человека к токоведущим частям трёхфазных сетей напряжением до 1000 В.

Изучить влияние параметров сетей (режима нейтрали, сопротивлений изоляции и ёмкости фазных проводников относительно земли) на опасность поражения человека электрическим током.

Содержание работы

1. Оценить опасность прямого прикосновения человека к токоведущим частям трёхфазных сетей напряжением до 1000 В с изолированной и глухозаземлённой нейтралями при различных сопротивлениях изоляции и ёмкостях, фазных проводников относительно земли. Провести сравнение опасности для двух режимов работы сетей – нормального и аварийного (т.е. при замыкании на землю одного из фазных проводников сети через малое активное сопротивление).

2. При нормальном режиме работы сетей определить ток, проходящий через человека при прикосновении к фазному проводнику в зависимости от:

а) сопротивлений изоляции фазных проводников симметричной сети (когда сопротивления изоляции и ёмкости фазных проводников относительно земли одинаковы) при постоянной ёмкости этих проводников относительно земли,

б) ёмкостей фазных проводников симметричной сети относительно земли при постоянном сопротивлении изоляции этих проводников относительно земли.

Анализ опасности поражения током в электрических сетях

Согласно Правилам устройства электроустановок [2] прямое прикосновение – электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.

Токоведущая часть – проводящая часть электроустановки, находящаяся в процессе её работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не PEN-проводник) [2].

Тяжесть поражения человека электрическим током определяется напряжением прикосновения.

Напряжение прикосновения – напряжение между двумя проводящими частями или между проводящей частью и землёй при одновременном прикосновении к ним человека или животного.

Ожидаемое напряжение прикосновения – напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.

Опасность прикосновения, оцениваемая током (Ih), проходящим через тело человека, или напряжением прикосновения (U пр), зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, а также сопротивлений изоляции и ёмкостей фазных проводников относительно земли. В данной работе исследуется прямое прикосновение человека к фазному проводу трёхфазной сети напряжением до 1000 В.

Для электроустановок напряжением до 1000 В приняты следующие обозначения:

система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземлённой нейтрали источника посредством нулевых защитных проводников;

система TN-С – система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем её протяжении (рис. 2.1);

Рис. 2.1. Система TN -C переменного тока.
1 -заземлитель нейтрали (средней точки) источника питания; 2 – открытые проводящие части.

система TN-S – система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем её протяжении (рис. 2.2);

Рис. 2.2. Система TN -S переменного тока.

1 – заземлитель нейтрали источника переменного тока; 2 –открытые проводящие части.

система TN-C-S – система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания (рис. 2.3);

Рис. 2.3. Система TN-C-S переменного тока.

1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части, 3 – источник питания

система IT – система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводя­щие части электроустановки заземлены (рис. 2.4);

Рис. 2.4. Система IT переменного тока.

Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление: 1 – сопротивление заземления нейтрали источника питания (если имеется); 2 – заземлитель; 3 – открытые проводящие части; 4 – заземляющее устройство электроустановки;

система ТТ – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника (рис. 2.5).

Рис. 2.5. Система ТТ переменного тока.

Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:

Первая буква – состояние нейтрали источника питания относительно земли:

Т – заземлённая нейтраль;

I –изолированная нейтраль.

Вторая буква – состояние открытых проводящих частей относительно земли:

Т – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N – открытые проводящее части присоединены к глухозаземлённой нейтрали источника питания.

Последующие (после N) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S – нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

С – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);

N- – нулевой рабочий (нейтральный) проводник;

РЕ- – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN- – совмещённый нулевой защитный и нулевой рабочий проводники.

В данной работе рассматриваются прямое прикосновение человека к фазным проводникам сетей напряжением до 1000 В с изолированной (система IT) и глухозаземлённой (система TN-С) нейтралью при условии, что защитные меры от поражения электрическим током отсутствуют.

Опасность прикосновения человека к фазному проводнику сети определяется значением проходящего через него тока Ih.

В сети с изолированной нейтралью при нормальном режиме работы (рис.2.6) и при равенстве между собой сопротивлений изоляции и ёмкостей проводников относительно земли ток через человека, касающегося фазного проводника определяется выражением:

(2.1)

где – ток через человека в комплексной форме, А,

U ф – фазное напряжение, В,

Rh – сопротивление тела человека, Ом,

Z – комплексное сопротивление фазного проводника относительно земли, Ом.

Рис. 2.6. Прикосновение человека к фазному проводнику сети с

изолированной нейтралью при нормальном режиме её работы.

Комплекс полного сопротивления Z, как величину обратную проводимости Y, можно записать в виде

, (2.2)

где r – сопротивление изоляции проводников, Ом,

C – ёмкость проводников относительно земли, Ф,

– угловая частота, с -1 ,

f – частота переменного тока, Гц.

При равенстве сопротивлений изоляции и весьма малых значениях ёмкостей проводников относительно земли, т. е. при r1=r2=r3=r и С123=0, что может иметь место в воздушных линиях небольшой протяжённости ток, проходящий через человека, будет определяться как:

, (2.3)

При равенстве ёмкостей и весьма больших сопротивлениях изоляции фазных проводников относительно земли, т. е. при r1=r2=r3=r и С123=C, что может иметь место в кабельных линиях, ток через человека согласно (2.1) и (2.2) определяется из выражения:

, (2.4)

где ёмкостное сопротивление, Ом.

Таким образом, в сети с изолированной нейтралью опасность для человека, прикоснувшегося к одному из фазных проводов при нормальном режиме работы сети, зависит от сопротивлений и ёмкостей фазных проводов относительно земли (рис. 2.7).

Рис. 2.7. Зависимость тока через тело человека от параметров (сопротивлений изоляции и ёмкостей фазных проводов относительно земли) системы IT

При аварийном режиме работы сети системы IT (замыкание фазы на землю через малое активное сопротивление ), проводимости двух других фаз можно принять равными нулю.

Если человек при этом касается исправного провода сети (рис. 2.8 а), то получим ток через тело человека:

, (2.5)

а напряжение прикосновения:

, т.к. . (2.6)

Рис.2.8. Прикосновение человека к фазному проводнику сети с изолированной нейтралью при аварийном режиме:

а) прикосновение к исправному проводнику,

б) прикосновение к замкнувшемуся проводнику.

Если человек прикоснулся к проводу, который замкнулся на землю (рис. 2.8 б), то:

, (2.7)

, (2.8)

(2.9)

, то

В сети с глухозаземлённой нейтралью при нормальном режиме работы(рис. 2.9а)ток, проходящий через человека равен:

(2.10)

где – сопротивление заземлителя нейтрали, Ом.

Рис.2.9 Прикосновение человека к фазному проводнику четырёх проводной сети с глухозаземлённой нейтралью:

а) нормальный режим, б) аварийный режим

Согласно требованиям Правил устройства электроустановок (ПУЭ) для сети 380/220 В наибольшее значение r составляет 4 Ом, сопротивление же тела человека Rh не опускается ниже нескольких сотен Ом. Следовательно, без большой ошибки в (2.7) можно пренебречь значением r .

Из выражений (2.1) и (2.10) следует, что прикосновение к фазному проводнику сети с глухозаземлённой нейтралью в нормальном режиме работы опаснее, чем прикосновение к проводнику сети с изолированной нейтралью, т.к. человек в этом случае попадает практически под фазное напряжение независимо от значений сопротивления изоляции и ёмкости проводников относительно земли.

Сеть с глухозаземлённой нейтралью – аварийный режим.

Если человек касается замкнувшегося на землю (L1) проводника (рис. 2.9, б), то ток через него намного меньше и определяется напряжением:

, (2.11)

где: , (2.12)

(2.13)

Тогда напряжение нулевой точки сети относительно нейтрали и нулевого проводника

, (2.14)

При аварийном режиме, когда один из фазных проводов сети (например, провод L1 (рис. 2.9 б), замкнут на землю через относительно малое активное сопротивление Rзм, а человек прикасается к исправному фазному проводу (например, L3), напряжение прикосновения в действительной форме имеет вид

(2.15)

(2.16)

При этом ток, проходящий через тело человека, будет определяться выражением:

(2.17)

Рассмотрим два характерных случая.

Если принять, что сопротивление замыкания фазного провода на землю Rзм равно нулю, то напряжение прикосновения

. (2.18)

Следовательно, в данном случае человек окажется практически под воздействием линейного напряжения сети.

Если принять равным нулю сопротивления заземления нейтрали R, то

, (2.19)

т.е. напряжение, под которым окажется человек, будет практически равно фазному напряжению.

Однако в реальных условиях сопротивления Rзм и R всегда больше нуля, поэтому напряжение, под которым оказывается человек, прикоснувшийся в аварийный период к исправному фазному проводу трёхфазной сети с глухозаземлённой нейтралью, т.е. напряжение прикосновения Uпр всегда меньше линейного, но больше фазного, то есть

(2.20)

С учётом того, что всегда Rзм > R, напряжение прикосновения Uпр в большинстве случаев незначительно превышает значение фазного напряжения, что менее опасно для человека, чем в аналогичной ситуации в сети типа IT.

Дата добавления: 2018-11-24 ; просмотров: 200 ; Мы поможем в написании вашей работы!

Источник

Анализ опасности поражения человека электрическим током

Условия поражения человека электрическим током возникают при включении его в электрическую цепь электроустановки или при попадании в зону действия электрической дуги.

Читайте также:  Чтобы узнать потребление тока

Опасность поражения человека электрическим током характе­ризуют следующие факторы:

  • схема включения человека в цепь электрического тока;
  • напряжение сети, питающей электроустановку;
  • сопротивление проводов сети относительно земли;
  • режим работы сети (нормальный или аварийный);
  • тип сети и режим нейтрали;
  • значение емкости проводов относительно земли.

Следует иметь в виду, что опасность поражения человека элек­трическим током не является однозначной. Анализ опасности по­ражения электрическим током в электроустановках сводится к определению значения токов в цепи тела человека / Л, которое зависит от напряжения прикосновения или шага.

Правилами устройства электроустановок (ПУЭ) определено понятие «электроустановка». Электроустановкой принято называть совокупность машин, аппаратов, линий и вспомогательного обо­рудования (вместе с сооружениями и помещениями), предназна­ченных для производства, преобразования, трансформации, рас­пределения электрической энергии и преобразования ее в другие виды энергии.

Все электроустановки по условиям электробезопасности под­разделяются:

  • на электроустановки напряжением до 1 кВ с заземленной ней­тралью;
  • электроустановки напряжением 1кВ с изолированной нейтра­лью;
  • электроустановки напряжением выше 1 кВ в сетях с эффек­тивно заземленной нейтралью (с большими токами замыкания на землю);
  • электроустановки напряжением выше 1 кВ в сетях с изолиро­ванной нейтралью (с малыми токами замыкания на землю).

В современной нормативно-технической документации все элек­троустановки напряжением до 1кВ рассматриваются как системы различных типов. Под системой следует понимать совокупность источника электроэнергии, питающей линии и потребителя элек­троэнергии.

Термином «питающие электрические сети» обозначается со­ставная часть системы, включающая в себя источник электроэнер­гии и питающие линии.

Питающие сети различаются по типам систем токоведущих проводников и систем заземления.

Существуют следующие типы систем токоведущих проводни­ков переменного тока:

  • однофазные двухпроводные;
  • однофазные трехпроводные;
  • двухфазные трехпроводные;
  • двухфазные пятипроводные;
  • трехфазные трехпроводные;
  • трехфазные четырехпроводные;
  • трехфазные пятипроводные.

Система TN — система, в которой нейтраль источника элект­роэнергии глухо заземлена, а открытые проводящие части элект­роустановки присоединены к глухозаземленной нейтрали (занулены) при помощи нулевых защитных проводников.

Нейтраль — общая точка обмоток генераторов или трансфор­маторов, питающих сеть; напряжения на выходных зажимах ис­точника электроэнергии, измеренные относительно нейтрали, равны.

Глухозаземленная нейтраль источника электроэнергии — нейт­раль генератора или трансформатора в сетях трехфазного тока напряжением до 1 кВ, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Изолированная нейтраль — нейтраль генератора или трансфор­матора в сетях трехфазного тока напряжением до 1 кВ, не присо­единенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и подобные им устройства, имеющие большое сопротивление.

Проводящие части — части, которые могут проводить электри­ческий ток.

Токоведущие части — проводники или проводящие части, пред­назначенные для работы под напряжением в нормальном режи­ме, включая нулевой рабочий проводник.

Открытые проводящие части — доступные прикосновению про­водящие части электроустановки, не находящиеся под напряже­нием, но которые могут оказаться под напряжением при повреж­дении основной изоляции.

Нулевой проводник — это проводник, соединенный с глухозаземленной нейтралью, предназначенный либо для питания по­требителей электроэнергии, либо для присоединения к откры­тым проводящим частям.

Нулевой рабочий проводник (N-проводник) — нулевой проводник в электроустановках напряжением до 1 кВ, предназначенный для питания электроприемников.

Нулевой защитный проводник (РЕ-проводник) — нулевой про­водник в электроустановках напряжением до 1 кВ, предназначен­ный для присоединения к открытым проводящим частям в целях обеспечения электробезопасности.

Системы заземления электрических сетей могут быть следующих типов: TN—C, T N – S , T N – C – S , IT, ТТ.

Система TN—C — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на
всем ее протяжении (рис. 7.1); при этом совмещенный нулевой и рабочий провод обозначается PEN.

Система TN—S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 7.2).

Система TN—C—S — система TN, в которой функции нулево­го защитного и нулевого рабочего проводников совмещены в од­ном проводнике в какой-то ее части, начиная от источника элек­троэнергии (рис. 7.3).

Система IT — система, в которой нейтраль источника электроэнергии изолирована от земли или заземлена через приборы или устройства, имеющее большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 7.4). В этом случае защитный заземляющий проводник обозначается так же, как и нулевой защитный проводник, т.е. РЕ-проводник.

Система ТТ — система, в которой нейтраль источника элект­роэнергии глухо заземлена, а открытые проводящие части элект­роустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источ­ника.

Поскольку далее приведен анализ электробезопасности различ­ных типов электрических сетей, предназначенных для питания потребителей электроэнергии, то для удобства изложения мате­риала в дальнейшем будем пользоваться терминами типа «сеть TN—С», «сеть 1Т» и другими, которые означают совокупность ис­точника электроэнергии с определенным режимом заземления нейтрали и питающей линии с определенной системой токоведу­щих проводников. Например, сеть TN—С означает совокупность источника электроэнергии с глухозаземленной нейтралью и трех­ фазной четырехпроводной питающей линии.

Существуют различные «схемы включения» человека в элект­рическую цепь тока (наиболее характерные «схемы включения» показаны на рис. 7.5. на примере трехфазной сети с изолирован­ной нейтралью):

  • прямое двухфазное (двухполюсное) прикосновение — одно­временное прикосновение к проводникам двух фаз (двум полю­сам) действующей электроустановки (поз. 1 на рис. 7.5);
  • прямое однофазное (однополюсное) прикосновение — при­косновение к проводнику одной фазы (одному полюсу) действу­ющей электроустановки (поз. 2 на рис. 7.5);
  • косвенное прикосновение — прикосновение к открытым про­водящим частям электроустановок, оказавшимся под напряже­нием в результате повреждения изоляции (прикосновение к кор­пусу электроустановки с поврежденной изоляцией) (поз. 3 нарис. 7.5);
  • включение под напряжение шага — включение между двумя точками земли (грунта), находящимся под разными потенциа­лами.

Напряжение прикосновения Uh, В, — это разность потенциалов между двумя точками цепи тока, которых одновременно касается человек, или падение напряжения на сопротивлении тела челове­ ка Rh:

где lh— ток, протекающий через тело человека путями: рука-ноги или рука—рука, мА; Rh — активное сопротивление тела че­ловека, Ом (для расчетов обычно принимают Rh = 1 кОм).

Если человек стоит на земле и касается заземленного корпуса электроустановки, на который замкнулся фазный провод (в даль­нейшем будем употреблять стандартизированный термин «призамыкании на корпус»), как это показано на рис. 7.6, то напряже­ние прикосновения может быть записано в виде

где ф3 — потенциал заземленного корпуса, т.е. потенциал рук че­ловека, В; фо,. — потенциал основания в том месте, где стоит человек, т.е. потенциал ног, В.

Потенциал заземленного корпуса определяют по формуле

где l3, — ток замыкания на землю; R3, — сопротивление заземления.
Проведя простые преобразования, выражение (7.1) можно за­писать в виде

где а — коэффициент напряжения прикосновения.

Напряжением шага называется разность потенциалов между двумя точками электрической цепи, которых одновременно каса­ется ногами человек, или падение напряжения на сопротивлении тела человека:

где Uш— напряжение шага, В; lh— ток, протекающий через тело человека по пути нога—нога, мА.

Если человек стоит на земле вблизи заземленного корпуса элек­троустановки, на который замкнулся фазный провод, как это показано на рис. 7.7, то уравнение для определения напряжения шага можно записать в виде

где фх — потенциал точки на поверхности земли на расстоянии от заземлителя, В; фх+а — потенциал точки на поверхности земли на расстоянии (х + а) от заземлителя, В (а — длина шага, обычно принимается равной 1 м).

По аналогии с напряжением прикосновения выражение для напряжения шага можно записать в виде

Источник

Анализ опасности поражения током в различных электрических сетях

Чем определяется опасность поражения током в различных электрических сетях?

Анализ опасности поражения практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых он может оказаться при эксплуатации электроустановок, или напряжения прикосновения. Опасность поражения зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, емкости токоведущих частей относительно земли и т. п.

Каковы схемы включения человека в электрическую цепь?

Наиболее характерными являются две схемы включения: между двумя фазами электрической сети, между одной фазой и землей. Кроме того, возможно прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением, а также включение человека под шаговое напряжение.

Что называется нейтралью трансформатора (генератора) и каковы режимы ее работы?

Точка соединения обмоток питающего трансформатора (генератора) называется нейтральной точкой, или нейтралью. Нейтраль источника питания может быть изолированная и заземленная.

Заземленной называется нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Изолированной называется нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы).

Что положено в основу выбора режима нейтрали?

Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности.

При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.

По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения — линейное и фазное. Так, от четырехпроводной сети 380 В можно питать как силовую нагрузку — трехфазную, включая ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая ее между фазным и нулевым проводами, т. е. на фазное напряжение 220 В. При этом становится значительно дешевле электроустановка за счет применения меньшего числа трансформаторов, меньшего сечения проводов и т. п.

По условиям безопасности выбирают одну из двух сетей исходя из положения: по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период — сеть с заземленной нейтралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий, передвижные установки.

Читайте также:  Изменение силы тока в цепи электромагнита с помощью реостата

Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок (из-за высокой влажности, агрессивной среды и пр.) или нельзя быстро отыскать и устранить повреждение изоляции, когда емкостные токи сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр.

Существующее мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статистические данные указывают, что по условиям надежности работы обе сети практически одинаковы.

При напряжении выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ — заземленную.

Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так и с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Какова опасность двухфазного прикосновения?

Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).

Схема двухфазного прикосновения человека к сети переменного тока

Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока

Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука—рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:

ток, проходящий через тело человека

  • Uл — линейное напряжение, т. е. напряжение между фазными проводами сети;
  • Rчел — сопротивление тела человека.

В сети с линейным напряжением Uл = 380 В при сопротивлении тела человека Rчел = 1000 Ом ток, проходящий через тело человека, будет равен:

сети с линейным напряжением

Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).

Случаи прикосновения человека к двум фазам происходят сравнительно редко.

Чем характеризуется однофазное прикосновение?

Однофазным прикосновением называется прикосновение к одной фазе электроустановки, находящейся под напряжением.

Оно происходит во много раз чаще, чем двухфазное прикосновение, но менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается и ток, проходящий через тело человека. Кроме того, на этот ток большое влияние оказывают режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление пола (или основания), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Какова опасность однофазного прикосновения в сети с заземленной нейтралью?

Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью

Рис. 2. Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью

В сети с заземленной нейтралью (рис. 2) цепь тока, проходящего через тело человека, включает в себя сопротивления тела человека, его обуви, пола (или основания), на котором стоит человек, а также сопротивление заземления нейтрали источника тока. С учетом указанных сопротивлений ток, проходящий через тело человека, определяется из следующего выражения:

сети с заземленной нейтралью

  • Uф — фазное напряжение сети, В;
  • Rчел — сопротивление тела человека, Ом;
  • Rоб — сопротивление обуви человека, Ом;
  • Rп — сопротивление пола (основания), на котором человек стоит, Ом;
  • Ro — сопротивление заземления нейтрали источника тока, Ом.

При наиболее неблагоприятных условиях (человек, прикоснувшийся к фазе, имеет на ногах токопроводящую обувь — сырую или подбитую металлическими гвоздями, стоит на сырой земле или на проводящем основании — металлическом полу, на заземленной металлоконструкции), т. е. когда Rоб = 0 и Rп = 0, уравнение принимает вид:

человек, прикоснувшийся к фазе

Поскольку сопротивление нейтрали Ro обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда

сопротивление нейтрали

Однако при этих условиях и однофазное прикосновение, несмотря на меньший ток, весьма опасно. Так, в сети с фазным напряжением Uф = 220 В при Rчел = 1000 Ом ток, проходя через тело человека, будет иметь значение:

ток смертельно опасен для человека

Такой ток смертельно опасен для человека.

Если человек имеет на ногах непроводящую обувь (например, резиновые галоши) и стоит на изолирующем основании (например, на деревянном полу), то

человек имеет на ногах непроводящую обувь

  • 45 000 — сопротивление обуви человека, Ом;
  • 100 000 — сопротивление пола, Ом.

Ток такой силы не опасен для человека.

Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь.

Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?

В сети с изолированной нейтралью (рис. 3) ток, проходящий через тело человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

С учетом сопротивлений обуви Rоб и пола или основания Rп, на котором стоит человек, включенных последовательно сопротивлению тела человека Rчел, ток, проходящий через тело человека, определяется уравнением:

С учетом сопротивлений обуви

где Rиз — сопротивление изоляции одной фазы сети относительно земли, Ом.

Схема прикосновения человека к одной фазе трехфазной сети с изолированной нейтралью

Рис. 3. Схема прикосновения человека к одной фазе трехфазной сети с изолированной нейтралью

При наиболее неблагоприятном случае, когда человек имеет проводящую ток обувь и стоит на токопроводящем полу, т. е. при Rоб = 0 и Rп = 0, уравнение значительно упростится:

При наиболее неблагоприятном случае

Для этого случая в сети с фазным напряжением Uф = 220 В и сопротивлением изоляции фазы Rиз = 90 000 Ом при Rчел = 1000 Ом ток, проходящий через человека, будет равен:

этого случая в сети с фазным напряжением

Этот ток значительно меньше тока (220 мА), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Он определяется в основном сопротивлением изоляции проводов относительно земли.

Какая сеть является более безопасной — с изолированной или заземленной нейтралью?

При прочих равных условиях прикосновение человека к одной фазе сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Однако этот вывод справедлив лишь для нормальных (безаварийных) условий работы сетей, при наличии незначительной емкости относительно земли.

В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного, в то время как в сети с заземленной нейтралью повышение напряжения окажется незначительным.

Однако современные электрические сети ввиду их разветвленности и значительной протяженности создают большую емкостную проводимость между фазой и землей. В этом случае опасность прикосновения человека к одной и двум фазам практически одинакова. Каждое из этих прикосновений весьма опасно, так как ток, проходящий через тело человека, достигает очень больших значений.

Что такое напряжение шага?

Под напряжением шага понимается напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек. Величина шага обычно принимается равной 0,8 м.

Для некоторых животных (лошади, коровы) величина напряжения шага больше, чем для людей, и путь тока захватывает грудную клетку. По этим причинам они более подвержены поражениям шаговым напряжением.

Шаговое напряжение возникает вокруг места перехода тока от поврежденной электроустановки в землю. Наибольшая величина будет около места перехода, а наименьшая — на расстоянии более 20 м, т. е. за пределами, ограничивающими поле растекания тока в грунте.

На расстоянии 1 м от заземлителя падение напряжения составляет 68% полного напряжения, на расстоянии 10 м — 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть равны нулю.

Такие точки поверхности почвы считаются находящимися вне зоны растекания тока и называются «землей».

Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает. И тогда напряженйе шага возрастает, так как путь тока проходит уже не через ноги, а через все тело.

Случаи поражения людей из-за воздействия напряжения шага относительно редки. Они могут произойти, например, вблизи упавшего на землю провода (в такие моменты до отключения линии нельзя допускать людей и животных на близкое расстояние к месту падения провода). Наиболее опасны напряжения шага при ударе молнии.

Оказавшись в зоне шагового напряжения, выходить из нее следует небольшими шагами в сторону, противоположную месту предполагаемого замыкания на землю, и в частности лежащего на земле провода.

Источник



Как оценивается опасность поражения человека током электроустановки в электросетях различной конфигурации

Знание процессов, протекающих в электроустановках, позволяет энергетикам безопасно эксплуатировать оборудование любого напряжения и вида тока, выполнять ремонтные работы и техническое обслуживание электрических систем.

Избежать случаев поражения током электроустановки помогает информация, излагаемая в ПУЭ, ПТБ и ПТЭ — основных документов, созданных лучшими специалистами на основе анализа несчастных случаев с людьми, пострадавшими от опасных факторов, сопровождающих работу электрической энергии.

Обстоятельства и причины попадания человека под действие электрического тока

Руководящие документы по безопасности выделяют три группы причин, объясняющих поражение работников электрическим током:

1. непреднамеренное, нечаянное приближение к токоведущим частям с напряжением на расстояние, меньшее безопасного или прикосновение к ним;

2. возникновение и развитие аварийных ситуаций;

3. нарушения требований, указанных в руководящих документах, предписывающих правила поведения работников в действующих электроустановках.

Оценка опасностей поражения человека заключается в определении расчетами величин токов, которые проходят через тело пострадавшего. При этом приходится учитывать много ситуаций, когда контакты могут возникнуть в случайных местах электроустановки. К тому же, приложенное к ним напряжение изменяется в зависимости от многих причин, включающих условия и режимы работы электрической схемы, ее энергетические характеристики.

Условия поражения человека током электроустановки

Чтобы через тело пострадавшего стал протекать ток, необходимо создать электрическую цепь подключением его минимум к двум точкам схемы, обладающей разностью потенциалов — напряжением. На электрическом оборудовании возможны проявления следующих условий:

1. одновременное двухфазное или двухполюсное прикосновение к различным полюсам (фазам);

Читайте также:  Период тока промышленной частоты

2. однофазное или однополюсное прикосновение к потенциалу схемы, когда человек имеет непосредственную гальваническую связь с потенциалом земли;

3. случайное создание контакта с проводящими элементами электроустановки, которые оказались под напряжением в результате развития аварии;

4. попадание под действие напряжения шага, когда разность потенциалов создана между точками, на которых одновременно находятся ноги или другие части тела.

При этом может возникнуть электрический контакт пострадавшего с токоведущей частью электроустановки, который рассматривается ПУЭ как прикосновение:

2. либо косвенное.

В первом случае он создается непосредственным контактом с токоведущей частью, включенной под напряжение, а во втором — при прикосновениях к не изолированным элементам схемы, когда на них прошел опасный потенциал в случае развития аварии.

Чтобы определить условия безопасной эксплуатации электроустановки и подготовить для работников внутри нее рабочее место, необходимо:

1. проанализировать случаи вероятного создания путей прохождения электрического тока через организм обслуживающего персонала;

2. сравнить его максимально возможную величину с действующими минимально допустимыми нормативами;

3. принять решение о выполнении мер обеспечения электрической безопасности.

Особенности анализа условий поражения людей в электроустановках

Для оценки величины тока, проходящего через тело пострадавшего в сети постоянного или переменного напряжения, используются следующие виды обозначений для:

Rh — у тела человека;

R0 — для устройства заземления;

Rиз— слоя изоляции относительно контура земли;

Ih — через тело человека;

Iз — замыкания на контур земли;

Uc — цепи постоянного либо однофазного переменного токов;

При этом возможны следующие типовые схемы подключения пострадавшего к цепям напряжения в сетях:

1. постоянного тока при:

однополюсном касании контакта проводника с потенциалом, изолированным от контура земли;

однополюсном касании потенциала схемы с заземлённым полюсом;

2. трехфазных сетей при;

однофазном контакте с одним из потенциальных проводников (обобщенный случай);

Схемы поражения в цепях постоянного тока

Однополюсный контакт человека с потенциалом, изолированным от земли

Схема однополюсного прикосновения к потенциалу сети

Под действием напряжения Uc по последовательно созданной цепочке из потенциала нижнего проводника, тела пострадавшего (рука-нога) и контур земли через удвоенное сопротивление изоляции среды протекает ток Ih.

Однополюсный контакт человека с заземленным потенциалом полюса

Схема однополюсного прикосновения к заземленному потеницалу сети

В этой схеме ситуацию усугубляет подключение к контуру земли одного потенциального провода с сопротивлением R0, близким к нулю и значительно меньшим, чем у тела пострадавшего и слоя изоляции внешней среды.

Сила искомого тока приблизительно равна отношению напряжения сети к сопротивлению человеческого тела.

Двухполюсный контакт человека с потенциалами сети

Схема дувухполюсного прикосновения

Напряжение сети напрямую прикладывается к телу пострадавшего, а ток через его организм ограничивается только его собственным незначительным сопротивлением.

Общие схемы поражения в цепях переменного трехфазного тока

Создание контакта человека между фазным потенциалом и землей

В общем случае между каждой фазой схемы и потенциалом земли имеется свое сопротивление и создается емкость. Нейтраль обмоток источника напряжения имеет обобщенное сопротивлением Zн, величина которого в разных системах заземления цепи меняется.

Схема однофазного прикосновения в трехфазной сети

Формулы расчета проводимостей каждой цепочки и общей величины тока Ih через фазное напряжение Uф представлены на картинке формулами.

Образование контакта человека между двумя фазами

Наибольшую величину и опасность представляет ток, проходящий через цепочку, созданную между непосредственными контактами тела пострадавшего с фазными проводами. При этом часть тока может пройти по пути через землю и сопротивления изоляции среды.

Схема двухфазного прикосновения в трехфазной сети

Особенности двухфазного прикосновения

В цепях постоянного и трехфазного переменного токов создание контактов между двумя различными потенциалами наиболее опасно. При такой схеме человек попадает под действие наибольшего напряжения.

В схеме с источником питания постоянного напряжения величина тока через пострадавшего вычисляется по формуле Ih=Uc/Rh.

В трехфазной сети переменного тока это значение вычисляется по соотношению Ih=Uл/Rh= √3 Uф/Rh.

Считая, что среднее электрическое сопротивление тела человека составляет 1 килоом , рассчитаем ток, который возникает в сети постоянного и переменного напряжения 220 вольт.

В первом случае он составит: Ih=220/1000=0,22А. Этой величины в 220 мА достаточно для того, чтобы пострадавший подвергся судорожному сжатию мышц, когда без посторонней помощи он освободиться от воздействия случайного прикосновения уже не в состоянии — удерживающий ток.

Во втором случае Ih=(220 · 1,732)/1000 =0,38А. При таком значении в 380 мА возникает смертельная опасность поражения.

Также обращаем внимание на то, что в сети переменного трехфазного напряжения положение нейтрали (может быть изолирована от земли или наоборот — подсоединена накоротко) очень мало влияет на величину тока Ih. Его основная доля идет не через цепочку земли, а между потенциалами фаз.

Если человек применил средства защиты, обеспечивающие его надежную изоляцию от контура земли, то они в подобной ситуации окажутся бесполезными и не помогут.

Особенности однофазного прикосновения

Трехфазная сеть с глухо заземленной нейтралью

Пострадавший прикасается к одному из фазных проводов и попадает под разность потенциалов между ним и контуром земли. Такие случаи происходят чаще всего.

Схема однофазного прикосновения в трехфазной сети с заземленной нейтралью

Хотя напряжение фазы относительно земли меньше чем линейное в 1,732 раза, такой случай остается опасным. Ухудшить состояние пострадавшего может:

режим нейтрали и качество ее подключения;

электрические сопротивления диэлектрического слоя проводов относительно потенциала земли;

вид обуви и ее диэлектрические свойства;

сопротивление грунта в месте нахождения пострадавшего;

другие сопутствующие факторы.

Значение тока Ih в этом случае можно определить по соотношению:

Напомним, что сопротивления: человеческого тела Rh, обуви Rоб, пола Rп и заземления у нейтрали R0, принимаются в Омах.

Чем меньше величина знаменателя, тем сильнее создается ток. Если работник носит токопроводящую обувь, например, промочил ноги или подошвы подбиты металлическими гвоздями, и вдобавок находится на металлическом полу или сырой земле, то можно считать, что Rоб=Rп=0. Так обеспечивается самый неблагоприятный случай для жизни пострадавшего.

При фазном напряжении в 220 вольт получим Ih=220/1000=0,22 А. Или ток смертельной опасности 220 мА.

Теперь рассчитаем вариант, когда работник использует средства защиты: диэлектрическую обувь (Rоб=45 кОм) и изолирующее основание (Rп=100 кОм).

Ih=220 /(1000 +45000+10000)=0,0015 А.

Получили безопасную величину тока 1,5мА.

Трехфазная сеть с изолированной нейтралью

Здесь отсутствует прямая гальваническая связь нейтрали источника тока с потенциалом земли. Фазное напряжение приложено к сопротивлению слоя изоляции Rиз, обладающей очень высокой величиной, которая контролируется при эксплуатации и постоянно поддерживается в исправном состоянии.

Схема однофазного прикосновения в трехфазной сети с изолированной нейтралью

Цепь протекания тока через тело человека зависит от этой величины в каждой из фаз. Если учесть все слои сопротивления току, то его величину можно просчитать по формуле: Ih=Uф/(Rh+Rоб+Rп+(Rиз/3)).

Во время самого неблагоприятного случая, когда созданы условия максимальной проводимости через обувь и пол, выражение примет вид: Ih=Uф/(Rh+(Rиз/3)).

Если рассматривать сеть 220 вольт с изоляцией слоя в 90 кОм, то получим: Ih=220/(1000+(90000/3)) =0,007 А. Такой ток в 7 мА будет хорошо ощущаться, но смертельную травму обеспечить не сможет.

Обратим внимание, что мы в рассматриваемом примере умышленно упустили сопротивление грунта и обуви. Если их учесть, то ток снизится до безопасной величины, порядка 0,0012 А или 1,2 мА.

1. в схемах с изолированной нейтралью безопасность работников обеспечить проще. Она напрямую зависит от качества диэлектрического слоя проводов;

2. при одинаковых обстоятельствах прикосновения к потенциалу одной фазы схема с заземленной нейтралью представляет наибольшую опасность, чем с изолированной.

Аварийный режим однофазного прикосновения в трехфазной сети с заземленной нейтралью

Рассмотрим случай касания металлического корпуса электрического прибора, если внутри него пробита изоляция диэлектрического слоя у потенциала фазы. Когда человек прикоснется к этому корпусу, то через его тело пойдет ток на землю и далее через нейтраль к источнику напряжения.

Схема замещения показана на картинке ниже. Сопротивлением Rн обладает создаваемая прибором нагрузка.

Аварийный режим однофазного прикосновения в трехфазной сети с заземленной нейтралью

Сопротивление изоляции Rиз совместно с R0 и Rh ограничивает ток междуфазного прикосновения. Он выражается соотношением: Ih=Uф/(Rh+Rиз+Rо).

При этом, как правило, еще на стадии проекта, выбирая материалы для случая, когда R0=0 стараются соблюдать условие: Rиз> ( Uф/ Ihg) —Rh.

Величина Ihg называется порогом неощутимого тока, значение которого человек не будет чувствовать.

Делаем вывод: сопротивление диэлектрического слоя всех токоведущих частей относительно контура земли определяет степень безопасности электроустановки.

По этой причине все подобные сопротивления нормированы и учтены утвержденными таблицами. С этой же целью нормируют не сами сопротивления изоляции, а токи утечек, которые через них протекают при испытаниях.

В электроустановках по разным причинам может возникнуть авария, когда потенциал фазы непосредственно касается контура земли. Если на воздушной ЛЭП один из проводов под действием различного типа механических нагрузок оборвался, то как раз в этом случае и проявляется подобная ситуация.

Обрыв провода на ВЛ10 кВ

При этом в месте контакта провода с землей образуется ток, который создает вокруг точки касания зону растекания — площадку, на поверхности которой появляется электрический потенциал. Его величина зависит от тока замыкания Iз и удельного состояния почвы r.

Схема распределения потенциала в зоне растекания тока на землю

Человек, оказавшийся в границах этой зоны, попадает под действие напряжения шага Uш, как показано на левой половинке картинки. Площадь зоны растекания ограничивается контуром, где потенциал отсутствует.

Значение напряжения шага рассчитывается по формуле: Uш=Uз∙β1∙β2.

В ней учитывается напряжение фазы в месте растекания тока — Uз, которое уточняется коэффициентами характеристик растекания напряжения β1 и влияния сопротивлений обуви и ног β2. Величины β1 и β2 публикуются в справочниках.

Значение тока сквозь тело пострадавшего вычисляется выражением: Ih= ( Uз∙β1∙β2 )/ Rh.

На правой части рисунка в положении 2 пострадавший создает контакт с замкнувшим на землю потенциалом провода. Он оказывается под влиянием разности потенциалов между точкой касания рукой и контуром земли, которая выражается напряжением прикосновения Uпр.

В этой ситуации ток вычисляют по выражению: Ih=(Uф.з.∙ α )/ Rh

Значения коэффициента растекания α могут меняться в пределах 0÷1 и учитывают характеристики, влияющие на Uпр.

В рассмотренной ситуации действуют те же выводы, что и при создании однофазного контакта пострадавшим в нормальном режиме эксплуатации электроустановки.

Если же человек расположен за пределами зоны растекания тока, то он находится в безопасной зоне.

Источник