Меню

Переменный ток период частота получение синусоидальной эдс

Получение синусоидального ЭДС

Синусоидальную ЭДС получают с помощью явления электромагнитной индукции. Рамку помещают в магнитное поле и равномерно вращают вокруг своей оси. Рамка пересекает магнитные линии и на ее концах наводится ЭДС электромагнитной индукции, которая изменяется по закону

ω- угол на который рамка поворачивается за 1с, называется угловой скоростью или угловой частотой.

, где f- циклическая частота, Гц

За время рамка поворачивается на угол , тогда получим

Начальная фаза. Фаза

Угол, под которым рамка находится к положительному направлению к горизонтальной оси в нулевой момент времени называется начальной фазой. Начальная фаза может быть положительной и отрицательной.

Начальная фаза обозначается

Общее уравнение гармонических колебаний:

Начальная фаза определяет значение переменной в нулевой момент времени.

Фаза определяет значение переменной в любой момент времени.

Пример решения задачи.

Действующие значения переменного тока

Действующими значениями переменного тока называют такой постоянный ток, который за время равное периоду выделяет в сопротивление R, такое же количество тепла, что и переменный ток.

Действующее значение характеризует энергетические свойства сигнала. Мгновенное значение характеризует информационные свойства сигнала. Приборы показывают действующее значение.

Выведем формулу действующего значения переменного тока:

Энергия на постоянном токе = энергии на переменном токе.

Энергия на постоянном токе за период

Чтобы узнать энергию на переменном токе за период надо:

Рассчитать элементарную энергию за маленький промежуток времени , а затем все эти энергии сложить, то есть взять интеграл за период.

— действующее значение переменного тока.

Действующее значение еще называют среднеквадратичным значением.

Вывод: Действующее значение — это замена сигнала данной формы сигналом не изменяющемся во времени.

Выведем формулу, связывающую действующее и максимальное значение гармонического сигнала.

Получается разность интегралов, где второй интеграл от гармонической функции

Формулы, которые связывают максимальное и действующее значения гармонического сигнала.

Угол сдвига фаз

Это разность начальных фаз двух переменных.

1 Та переменная, которая раньше достигает положительного максимума опережает по фазе, которая позже отстает по фазе — опережает по фазе, -отстает по фазе.

2 Если две переменные одновременно проходят максимум и ноль, то они совпадают по фазе.

Если угол сдвига фаз равен 180 0 , то переменные проходят в противофазе.

Источник

№12 Получение синусоидальной ЭДС. Характеристики синусоидальных величин. Обозначения в цепях переменного тока.

Пусть в однородном магнитном поле, например, между полюсами плоского магнита, под углом ψ к горизонтальной плоскости расположена плоская катушка, выполненная в виде прямоугольной рамки, по периметру которой намотано w витков (рис. 12.1). Площадь сечения рамки – S, магнитная индукция – В.

Рис. 12.1 — Получение синусоидальной ЭДС

Заставим эту катушку вращаться против часовой стрелки с угловой скоростью w . Если обозначить время полного оборота катушки через Т, то ω=2π/T, (рад/с) За некоторый промежуток времени t рамка повернется на угол ωt. Площадь проекции рамки в этом положении Sn=S*cos(ωt+ψ). Рамка и ее проекция на горизонтальную плоскую поверхность пронизываются одним и тем же числом силовых линий магнитной индукции, поэтому обусловленный ими магнитный поток равен:

При вращении катушки число силовых линий, охватываемых ее витками, все время меняется.

Например, при горизонтальном положении рамки это число максимально, при вертикальном – равно нулю. Другими словами, меняется магнитный поток, пронизывающий катушку, в результате чего в ней в соответствии с уравнением (12.1) наводится ЭДС:

Поясним величины, входящие в последнее выражение. Еm – максимальное значение или амплитуда ЭДС. Аргумент синусоидальной функции ω ωt+ψ называется фазой. Угол ψ, определяющий начальное положение рамки и равный фазе в начальный момент времени (при t = 0), – начальная фаза. Фаза с течением времени (при вращении катушки) постоянно меняется. Скорость изменения фазы ω называется угловой или циклической частотой. Время одного цикла изменения фазы (время одного оборота рамки) называется периодом и обозначается T. Количество полных изменений синусоидальной ЭДС в секунду определяет частоту f, измеряемую в герцах (Гц). Один герц соответствует одному полному колебанию в секунду. Связь между частотой и периодом выражается формулой f= 1/T . При частоте 50 Гц: ω=2π/T=2πf=314(c-1)

Графическое изображение синусоидальной функции времени в электротехнике называют волновой диаграммой. При ее построении на горизонтальной оси откладывается время t или пропорциональный ему угол ωt. При нулевой начальной фазе кривая выходит из начала координат и через каждые четверть периода принимает максимальные значения и переходит через ноль. График такой функции построен по уравнению е = Еm sinωt на рис. 12.2, а.

Рис. 12.2 — Волновые диаграммы

При ненулевых начальных фазах диаграммы имеют несколько иной вид. Пусть напряжение и ток на некотором участке цепи определяются выражениями:

Для определенности положим ψu > 0, а ψi ψi и угол φ положителен, то говорят, что напряжение опережает по фазе ток, или ток отстает по фазе от напряжения. На волновой диаграмме в этом случае кривая напряжения проходит через ноль и максимальные значения раньше тока; изменения тока отстают от соответствующих изменений напряжения. Мера отставания – угол φ.

Остановимся еще на двух моментах. В цепях синусоидального тока мы будем встречаться как с переменными, так и с постоянными величинами. Для тех и других применяются различные обозначения. Переменные величины – функции времени – будем обозначать маленькими (строчными) буквами u, i, e, а постоянные – большими (прописными) U, I, Е.

Второй момент касается указания направления тока или напряжения. При постоянном токе его направление связано с движением положительно заряженных частиц. В случае переменного тока его стрелка на схеме показывает у с л о в н о в ы б р а н н о е положительное направление. Если в какой-то момент времени ток направлен по стрелке, он считается положительным, в противном случае он отрицателен.

Источник

Получение синусоидальной ЭДС

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Читайте также:  Обозначение полярности тока при сварке

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

Читайте также:  Обозначение единицы измерения формула для расчета силы тока

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Период, амплитуда и частота — параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом.Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и и — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем.

Если мы имеем переменный ток, частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.

Круговая частота обозначается буквой ω и связана с частотой f соотношением ω = 2πf

Читайте также:  Определить фазные токи в трехфазной цепи соединение треугольником

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f.

Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π=3,14. Таким образом, окончательно получим ω = 2πf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Электроника и электротехника. Шпаргалка
Юлия Валерьевна Щербакова

Все выучить – жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальным преподом. Здесь найдешь все необходимое по «Общей электронике и электротехнике», а остальное – дело техники. Ни пуха, ни пера! Данное учебное пособие предназначено для студентов высших и средних специальных учебных заведений, изучающих электронику и электротехнику.

Оглавление

  • 1. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. ПОНЯТИЕ О ДВУХПОЛЮСНИКАХ.СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ
  • 2. ИСПОЛЬЗОВАНИЕ ЗАКОНОВ ОМА И КИРХГОФА ПРИ РАСЧЕТЕ И АНАЛИЗЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  • 3. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ОДНИМ ИСТОЧНИКОМ ЭНЕРГИИ И ПАССИВНЫМИ ЭЛЕМЕНТАМИ. ПРОСТЕЙШАЯ ЦЕПЬ С ОДНИМ ПРИЕМНИКОМ
  • 4. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ПОСЛЕДОВАТЕЛЬНЫМ СОЕДИНЕНИЕМ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ
  • 5. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ
  • 6. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ,СОДЕРЖАЩИЕ СОЕДИНЕНИЯ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ ТРЕУГОЛЬНИКОМ
  • 7. ПОНЯТИЕ ОБ ИСТОЧНИКЕ ТОКА
  • 8. МЕТОД ЗАКОНОВ КИРХГОФА. МЕТОД КОНТУРНЫХ ТОКОВ
  • 9. МЕТОД УЗЛОВОГО НАПРЯЖЕНИЯ
  • 10. МЕТОД НАЛОЖЕНИЯ
  • 11. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА
  • 12. ПОЛУЧЕНИЕ СИНУСОИДАЛЬНОЙ ЭДС. ОСНОВНЫЕ СООТНОШЕНИЯ
  • 13. ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ R И ИНДУКТИВНОСТЬЮ L
  • 14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
  • 15. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ R, L, C
  • 16. АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ
  • 17. РЕЗОНАНС НАПРЯЖЕНИЙ
  • 18. РЕЗОНАНС ТОКОВ
  • 19. СПОСОБЫ СОЕДИНЕНИЯ ФАЗ ИСТОЧНИКОВ И ПРИЕМНИКОВ. ПОЛОЖИТЕЛЬНЫЕ НАПРАВЛЕНИЯ ЭДС, НАПРЯЖЕНИЙ И ТОКОВ
  • 20. СООТНОШЕНИЯ МЕЖДУ ФАЗНЫМИ И ЛИНЕЙНЫМИ НАПРЯЖЕНИЯМИ ИСТОЧНИКОВ. НОМИНАЛЬНЫЕ НАПРЯЖЕНИЯ
  • 21. СОЕДИНЕНИЯ ПРИЕМНИКОВ ЗВЕЗДОЙ
  • 22. СОЕДИНЕНИЯ ПРИЕМНИКОВ ТРЕУГОЛЬНИКОМ
  • 23. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ МАГНИТНЫХ УСТРОЙСТВ
  • 24. ПОНЯТИЕ О ДВУХТАКТНЫХ И ТРЕХТАКТНЫХ МАГНИТНЫХ УСТРОЙСТВАХ
  • 25. МАГНИТОЭЛЕКТРИЧЕСКАЯ СИСТЕМА

Приведённый ознакомительный фрагмент книги Электроника и электротехника. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

12. ПОЛУЧЕНИЕ СИНУСОИДАЛЬНОЙ ЭДС. ОСНОВНЫЕ СООТНОШЕНИЯ

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока.

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по законам, отличным от синусоидального, называются цепями несинусоидального тока.

Генераторы электрических станций переменного тока устроены так, что возникающая в их обмотках ЭДС изменяется по синусоидальному закону. Синусоидальная ЭДС в линейных цепях, где содержатся резистивные, индуктивные и емкостные элементы, возбуждает ток, изменяющийся по закону синуса.

Возникающие при этом ЭДС самоиндукции в катушках и напряжения на конденсаторах, как это вытекает из выражений:

также изменяются по синусоидальному закону, так как производная синусоидальной функции есть функция синусоидальная. Напряжение на резистивном элементе будет так-же изменяться по синусоидальному закону: u = ir.

Целесообразность технического использования синусоидального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из(за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи.

Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.

Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС.

Для этого удобно использовать простейшую модель — рамку, вращающуюся с постоянной угловой скоростью в равномерном магнитном поле. Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции B, длине проводника l и скорости перемещения проводника относительно поля υt : е = Blυt.

Выразив скорость υt через окружающую скорость υ и угол α, получим: е = Blυ sin α = Em sin α.

Угол α равен произведению угловой скорости рамки ω на время t: α = ωt.

Таким образом, ЭДС, возникающая в рамке, будет равна: е = Em sin α = Em sin ωt.

За один поворот рамки происходит полный цикл изменения ЭДС.

Если при t = 0 ЭДС е не равна нулю, то выражение ЭДС записывается в виде:е = Em sin (ωt + y),

где e — мгновенное значение ЭДС (значение ЭДС в момент времени t);

Em — амплитудное значение ЭДС (значение ЭДС в момент времени );

t + ψ) — фаза;

ψ — начальная фаза.

Фаза определяет значение ЭДС в момент времени t, начальная фаза — при t = 0.

Время одного цикла называется периодом T, а число периодов в секунду — частотой f:

Единицей измерения частоты является c–1, или герц (Гц). Величина

в электротехнике называется угловой частотой и измеряется в рад/с.

Частота вращения рамки n и частота ЭДС f связаны между собой соотношением:

Источник