Меню

Протекание тока через вакуум

Что представляет собой электрический ток в вакууме

Любой ток появляется только при наличии источника со свободными заряженными частицами. Это связано с тем, что в вакууме отсутствуют какие-либо вещества, в том числе и электрические заряды. Поэтому вакуум считается самым лучшим диэлектриком. Для того, чтобы в нем стало возможным прохождение электрического тока, нужно обеспечить наличие в достаточном количестве свободных зарядов. В этой статье мы рассмотрим что представляет собой электрический ток в вакууме .

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией

, а сам раствор
электролитом
, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Характеристика электронного облака

Облако электронов около поверхности металла описывается формулой (5). В выражении (5) число квантовых состояний в элементе фазового объема $dxdydzdp_xdp_ydp_z$ запишется как:

Тогда количество электронов в элементе фазового объема будет равно:

где $E_k=\frac<2m_e>$. $p^2=^2+^2+^2$. Концентрацию электронного облака ($n_0$) около поверхности металла можно найти последовательным интегрированием выражения (7) по $dxdydz$ а за тем по $dp_xdp_ydp_z$, в результате получим:

Средняя кинетическая энергия электронов равна:

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости.

При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Все материалы в той или иной степени проводят электрический ток, т.е. имеют электропроводность. По этому признаку материалы подразделяются на проводники, полупроводники, диэлектрики.

Способность и возможность материала проводить электрический ток главным образом обусловлена: типом химической связи; шириной запрещенной зоны; видом свободных носителей заряда, их концентрацией и подвижностью.

Основными параметрами, характеризующими электрические свойства, являются: удельная электропроводность g(Ом-1 · м-1 ); удельное электросопротивление ρ (Ом · м); температурный коэффициент удельного электросопротивления aρ , или ТКС (К-1).

Удельная электропроводность

gсвязывает плотность тока
j
(А/м2) и напряженность электрического поля
Е
(В/м), вызывающего этот ток, соотношением
j
= g
E
(дифференциальная форма закона Ома).

Удельное электросопротивление —

величина, обратная удельной электропроводности: ρ = 1/g.

Для тела с постоянным поперечным сечением S,

сопротивлением
R
и длиной
l
ρ определяется по формуле

Согласно теории электропроводности, gможет быть выражена следующей формулой:

и
т —
соответственно заряд и масса носителя заряда (электрона в проводниках, электрона и дырки в полупроводниках, иона в диэлектриках);
v
и l— скорость и длина свободного пробега носителя заряда;
п —
концентрация носителей заряда, т.е. их количество в единице объема.

Изменение удельной электропроводности, а следовательно, и удельного электросопротивления в реальных материалах связано с изменением концентрации и длины свободного пробега носителей заряда.

Под действием электрического поля носители заряда приобретают ускорение, а их скорость пропорциональна напряженности поля:

(м2 /В·с) — подвижность носителей заряда — отношение скорости их направленного движения, вызванного электрическим полем, к напряженности этого поля. Она определяется выражением

Величина электропроводности сильно зависит от рассеяния носителей на несовершенствах кристаллической решетки — структурных дефектах и фононах. В результате рассеяния уменьшаются длина свободного пробега, скорость и подвижность носителей заряда.

Электроны в изолированном атоме имеют строго определенные дискретные значения энергии. В твердом теле из-за сближения атомов и сильного взаимодействия электронов и ядер происходит расщепление энергетических уровней атомов и объединение их в энергетические зоны

Энергетическая зона, образовавшаяся при расщеплении уровней валентных электронов, называется валентной зоной (Еv).

Следующая за ней зона разрешенных энергий —
зона проводимости (Ec).
Между ними расположена
запрещенная зона (Eg).
Если электрон получает энергию, превышающую ширину запрещенной зоны, то он переходит из валентной зоны в зону проводимости и участвует в электропроводности.

В соответствии с зонной теорией твердые тела подразделяются на проводники, полупроводники и диэлектрики.

— материалы, у которых валентная зона и зона проводимости перекрываются или примыкают друг к другу, поэтому электроны в металле свободны, т.е. могут переходить из валентной зоны в зону проводимости при приложении незначительной напряженности электрического поля. Атомы в металлах связаны друг с другом
металлической связью.
Валентные электроны имеют высокую подвижность и из-за перекрытия
Еv
, и
Ес
легко перемещаются в решетке металлического кристалла.

В металлах наблюдается электронный тип

электропроводности. При этом ускоренные полем электроны переносят только заряд. Переноса массы, как, например, в материалах, имеющих ионный тип электропроводности, не происходит.

Рис. 4.1. Энергетические зоны в твердом теле

Диапазон значений ρ металлических проводников занимает три порядка: от 1,58·10-8 Ом·м у серебра до 1000·10-8 Ом·м у сплавов системы Fe—Cr—A1.

Полупроводники

по электрическим свойствам занимают промежуточное положение между проводниками и диэлектриками: их удельное электросопротивление составляет 10-6 —109 Ом·м, ширина запрещенной зоны — от 0,05 до 2,5—3 эВ (энергия теплового движения при комнатной температуре
kT

0,03 эВ). Атомы в полупроводниках могут быть связаны как ковалентной неполярной и полярной, а также ионной связью; тип электропроводности —
электронно-дырочный.
Так же как и диэлектрики, полупроводники имеют отрицательный температурный коэффициент сопротивления (ТКС) aρ, т.е. с ростом температуры ρ полупроводников уменьшается, тогда как ρ металлов увеличивается.

Важной особенностью полупроводников является высокая чувствительность удельного электросопротивления не только к тепловым, но и к другим внешним воздействиям (электромагнитным полям, излучению, давлению и т. д.). Это обусловлено типом химической связи между атомами в кристаллической решетке полупроводника, а также наличием примесей и других дефектов, даже ничтожные концентрации которых существенно влияют на концентрацию свободных носителей заряда и, следовательно, на электрические свойства материала.

В промышленности применяются полупроводники, имеющие и электронный и дырочный

У диэлектриков

ширина запрещенной зоны превышает 3 эВ, удельное электросопротивление составляет 109—1016 Ом·м. Так же как и в полупроводниках, в диэлектриках может осуществляться ковалентный тип связи. Особенностью электропроводности твердых диэлектриков является в большинстве случаев ее ионный характер. Так как
Eg >> kT,
лишь очень незначительное количество электронов может оторваться от своих атомов под действием тепловой энергии, и их вклад в электропроводность пренебрежимо мал.
Ионная электропроводность
может быть обусловлена передвижением как ионов примесей, так и ионов самого диэлектрика.

Следует отметить, что электронный тип проводимости может быть ощутимым в том случае, если в запрещенной зоне вблизи дна зоны проводимости и потолка валентной зоны образуется большое число соответственно донорных и акцепторных уровней. Появление таких уровней может быть вызвано наличием примеси и дефектов кристаллической решетки.

Электронная электропроводность, обусловленная наличием свободных электронов, проявляется в сильных электрических полях и приводит к пробою изоляции. При электронной электропроводности переноса вещества не происходит, в то время как при ионной это явление наблюдается.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы

. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом

В «рекламной» неоновой трубке протекает тлеющий разряд

. Светящийся газ представляет собой «живую плазму».


Между электродами сварочного аппарата возникает
дуговой разряд
.

Читайте также:  Вводной автомат ток уставки


Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд
наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!


Для
коронного разряда
характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Ионы и ионная связь

Ион – это часть молекулы, число электронов в которой не равно числу протонов в ядрах его атомов, и, таким образом, ион всегда имеет некоторый заряд.

Ионы образуются за счет того, что существуют энергетически устойчивые конфигурации электронных оболочек в атомах, число электронов в которых имеет определенные значения – чаще всего, 0, 2 или 8 электронов.

Атому, число внешних электронов у которого близко к этим цифрам, «энергетически выгодно» изменить число электронов так, чтобы число электронов во внешней оболочке стало устойчивым, даже несмотря на приобретение электрического заряда.

Во внешней электронной оболочке натрия имеется один электрон, поэтому натрий очень легко теряет его, превращаясь в положительный ион. Во внешней электронной оболочке хлора имеется семь электронов, поэтому хлор легко включает один свободный электрон в оболочку, становясь отрицательным ионом. Эти два процесса могут быть объединены – натрий передает электрон хлору, в результате образуются два противоположно заряженных иона, которые сразу же притягиваются друг к другу. Поэтому натрий горит в хлоре, образуя белый дым, состоящий из мельчайших кристалликов обычной поваренной соли $NaCl$.

Рис. 2. Горение натрия в хлоре.

Химическая связь, возникающая за счет образования ионов, называется ионной. Такая связь имеется практически во всех кислотах, солях и щелочах.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии

— испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод

, холодный электрод, собирающий термоэлектроны —
анод
.

Появление электрического тока в вакууме и газах Вакуумный диод Резервуар с вакуумом

Термоэлектронный ток

Если около поверхности металла есть электрическое поле, то электроны из электронного облака образуют электрический ток. Этот ток называют термоэлектронным.

И так, если в вакууме находятся две металлические пластинки, между ними существует разность потенциалов, то между этими пластинками появится термоэлектронный ток.

Задай вопрос специалистам и получи ответ уже через 15 минут!

Сила тока должна расти при увеличении разности потенциалов. Для термоэлектронного тока существует сила тока насыщения. Это максимальная сила тока, при которой все электроны, которые попадают с поверхности катода в электронное облако, достигают анода. При этом ни какого обратного тока электронов через поверхность внутрь катода нет. Сила тока насыщения при увеличении разности потенциалов между анодом и катодом не изменяется.

Для металлов работа выхода составляет несколько электрон-вольт. При этом энергия $kT$ даже при больших температурах в тысячи кельвинов всего лишь доли электрон — вольта. Значит, $\frac=A_v\beta \gg 1,\ \to exp\left[\beta \left(E_k+A_v\right)\right]\gg 1,$ следовательно, в знаменателе формулы (4) единицей можно пренебречь и записать эту формулу в виде:

Сила тока насыщения зависит от работы выхода и температуры. Для чистых металлов существенный ток можно получить при температурах порядка $2000 К$, что означает, что в качестве катодов следует использовать металлы с высокой температурой плавления. При этом надо, чтобы работа выхода у них была минимальна. Так, вольфрам, имеющий работу выхода $4,5 эВ$, должен быть нагрет до температуры $2500 К$x.

Для того чтобы уменьшить рабочую температуру и снизить работу выхода применяют оксидные катоды.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Источник

Электрический ток в вакууме — причины появления, свойства и применение

Общие сведения

Понятие вакуум сходно слову «пустота». В физике под ним понимают пространство, которое освобождено от любых веществ. Однако учёные считают, что такого места быть не может. Объясняют это они тем, что даже в самом пустом пространстве должны существовать флуктуации. Экспериментально это удалось доказать Генриху Казимиру, описавшему явление в своём конспекте.

Он предположил, что вакуум представляет собой «резервуар» в котором вблизи абсолютного нуля происходит ряд волнений. Его опыт состоял в следующем. Учёный взял две заряженные пластины и поместил их между вакуумным пространством. Под действием внешних фотонов проводники притягивались друг к другу. То есть через пространство проходила хотя и слабая, но сила.

Поэтому в физике существует особый термин — физический вакуум. Под ним понимают замкнутое пространство, в котором давление в несколько раз меньше по сравнению с газовой средой. То есть его величина не оказывает никакого влияния и ей можно пренебречь. Так как электричество образуется при перемещении элементарных носителей зарядов, которые в вакууме практически отсутствуют, при простом воздействии на среду его получить не удастся. Поэтому единственной возможностью пропустить ток через пустоту является добавление в неё заряженных частиц.

В 1879 году Эдисон, изучая причину перегорания нитей в лампах накаливания, обнаружил образование тёмного налёта около анодного вывода. Этот эффект изобретатель объяснял тем, что внутри колбы возникает разряд, вследствие которого заряженные частицы угольной пыли выбиваются с проводника. Он предположил, что если в лампу ввести дополнительный электрод с положительным зарядом, то эти частицы будут им притягиваться.

Так был открыт эффект термоэлектронной эмиссии. Другими словами, испускание заряженных частиц при нагреве проводника до температур 1500 — 2500 о С. При таких величинах электроны разрывают связи и высвобождаются. Это явление сродни испарению молекул с поверхности жидкости. Оно нашло своё применение в вакуумных электронных приборах. Например, используется в электронно-лучевых трубках, ламповых диодах.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Вакуумный диод

Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.

Читайте также:  Что такое электрический ток в растворах солей

Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:

  • запаянной колбы;
  • электрода из металла (анод);
  • вольфрамовой спирали (катод);
  • реостата.

Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.

Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.

Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.

На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U 3/2 . Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.

Электронно-лучевая трубка

В вакуумных радиолампах поток электронов направлен от анода к катоду во все стороны. Но можно создать такие конструкции, в которых электроны будут направлены в одном направлении. Создаётся такой поток с помощью специальных фокусирующих пластин. Его часто называют катодным лучом. С его помощью можно нагревать тела, например, в вакуумных печах.

По своей природе он обладает следующими свойствами:

  • на него действует электрическое и магнитное поле (сила Лоренца);
  • попадая на некоторые вещества, например, сернистый цинк, сфокусированный электронный поток приводит к интересному результату — свечению;
  • луч генерирует рентгеновское излучение.

На этих свойствах и базируется класс вакуумных приборов называемый электронно-лучевыми трубками (ЭЛТ).

Устроено такое устройство следующим образом. Электроны в приборе образовываются с помощью термоэлектронной эмиссии. Катод прибора представляет собой цилиндр с плоским основанием, покрытым окисью бария. Этот электрод испускает электроны. Чтобы управлять их интенсивностью используется сетка. Подавая на неё напряжение, можно запирать поток или отпирать.

Главная деталь в определение электронного потока это его узкая направленность. Добиться этого можно, используя дополнительные анодные выводы. Один из них ускоряющий, а другой фокусирующий. Проходя через указанный набор ускоренный сфокусированный поток вылетает из ЭЛТ. На второй анод подаётся положительное напряжение напрямую, а на ускоряющий через реостат. Разность потенциалов кратна десяткам киловольт.

Вылетев с пушки поток, попадает на экран, покрытый люминофором. Вся эта система находится в колбе с безвоздушным пространством. Для того чтобы можно было перемещать луч по поверхности экрана используют конденсаторы. В зависимости от расположения их пластин происходит отклонение потока. Вызывает его подающееся на обкладки напряжение. От его значения луч может притягиваться к одной стороне или другой, по сути, изменяя поток электрического тока в вакууме. Так, кратко, и работает ЭЛТ.

Источник

Электрический ток в вакууме – причины появления, свойства и применение

Свободное пространство от вещества называют вакуумом. Электрический ток, являясь упорядоченным движением носителей зарядов, самостоятельно в нём появиться не может. Но существуют радиоэлектронные приборы, чаще всего усилительные, работа которых построена именно на пропускании электричества через вакуумную среду. Появление таких устройств стало возможным после открытия термоэлектронной эмиссии, фундаментального физического явления.

Электрический ток в вакууме - причины появления, свойства и применение

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией

, а сам раствор
электролитом
, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Основные понятия

С первого взгляда кажется, что ток и вакуум — это несовместимые понятия. Ведь в диэлектрике упорядоченное движение зарядов невозможно. Но на самом деле это не совсем так. Чтобы понять, почему же возникает проводимость в вакууме нужно изучить природу возникновения тока и что представляет собой газовое пространство с давлением ниже атмосферного.

В любом теле существуют частицы. Они могут находиться в свободном состоянии или быть привязаны к атому. Те и другие обладают определённым зарядом. Первые хаотично передвигаются в теле, компенсируя перемещение зарядов. Но если к материалу приложить силу, которая заставит носителей заряда двигаться в одном направлении, то возникнет электрический ток.

Его сила определяется количеством частиц прошедших через поперечное сечение тела за единицу времени. Измеряется она в амперах. Носителями зарядов могут быть:

  • протоны;
  • ионы;
  • электроны;
  • дырки.

Любое физическое тело состоит из молекул. Формируют их атомы, вокруг которых вращаются электроны. При химической реакции или внешнем воздействии электромагнитных полей происходит перемещение электронов. Они выбиваются или притягиваются другим телом, испытывающим недостаток в элементарных частицах. В результате возникает ток. Его направление совпадает с напряжённостью поля, формирующего движение частиц и создающего электричество.

Вакуум по определению представляет собой пространство, в котором нет вещества. Физики им называют среду, заполненную газом давление, которого меньше атмосферного. Воздух состоит из молекул, которые, двигаясь хаотично, сталкиваются друг с другом и различными препятствиями. Расстояние, которое молекула преодолевает после удара, называют длиной свободного пробега.

Если воздух заключить в сосуд и из него выкачивать воздух, то наступит такой момент, при котором молекулы не будут испытывать столкновение. То есть их свободный пробег будет определяться размерами ёмкости. Таким образом, хоть в сосуде и создался вакуум, некоторое количество молекул в среде останется.

Откачать же все частицы практически невозможно. Может только образоваться так называемый глубокий вакуум, в котором частичка практически не встречает сопротивление движению.

Отсюда следует, что при меньших размерах сосуда вакуум создаётся при большем давлении газа, чем в большой замкнутой ёмкости.



Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости.

При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Читайте также:  Преобразование переменного тока в постоянный ток более высокого напряжения

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы

. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом

В «рекламной» неоновой трубке протекает тлеющий разряд

. Светящийся газ представляет собой «живую плазму».


Между электродами сварочного аппарата возникает
дуговой разряд
.


Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд
наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!


Для
коронного разряда
характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии

— испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод

, холодный электрод, собирающий термоэлектроны —
анод
.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Электрический ток в вакууме - причины появления, свойства и применение

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Источник



Электрический ток в вакууме

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная(электроны выбиваются светом);
  • электронная(выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

Применение электрического тока в вакууме

Электрический ток в вакууме используется в различных электронных приборах. Одним из таких приборов является вакуумный диод

Рис. 3. Вакуумный диод

Состоит он из баллона, который включает 2 электрода – катод и анод.

Что мы узнали?

Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.

Источник