Меню

Пути тока через тело человека при поражении его электрическим током

Действие электрического тока на человека

Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействия.

Тепловое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон.

Химическое действие ведет к электролизу крови и других содержащихся в организме растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма.

Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток и тканей организма. В результате такого возбуждения они могут погибнуть.

Различают два основных вида поражения человека электрическим током: электрический удар и электрические травмы.

Электрическим ударом называется такое действие тока на организм человека, в результате которого мышцы тела начинают судорожно сокращаться. При этом в зависимости от величины тока и времени его действия человек может находиться в сознании или без сознания, но при нормальной работе сердца и дыхания. В более тяжелых случаях потеря сознания сопровождается нарушением работы сердечнососудистой системы, что ведет даже к смертельному исходу. В результате электрического удара возможен паралич важнейших органов (сердца, мозга и пр.).

Электрической травмой называют такое действие тока на организм, при котором повреждаются ткани организма: кожа, мышцы, кости, связки. Особую опасность представляют электрические травмы в виде ожогов. Такой ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Бывают также такие травмы, как металлизация кожи, различные механические повреждения, возникающие в результате резких непроизвольных движений человека. В результате тяжелых форм электрического удара человек может оказаться в состоянии клинической смерти: у него прекращается дыхание и кровообращение. При отсутствии медицинской помощи клиническая смерть (мнимая) может перейти в смерть биологическую. В ряде случаев, однако, при правильной медицинской помощи (искусственном дыхании и массаже сердца) можно добиться оживления мнимоумершего.

Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца, остановка дыхания вследствие паралича мышц грудной клетки и так называемый электрический шок.

Прекращение работы сердца возможно в результате непосредственного действия электрического тока на сердечную мышцу или рефлекторно из-за паралича нервной системы. При этом может наблюдаться полная остановка работы сердца или так называемая фибрилляция, при которой волокна сердечной мышцы приходят в состояние быстрых хаотических сокращений.

Остановка дыхания (вследствие паралича мышц грудной клетки) может быть результатом или непосредственного прохождения электрического тока через область грудной клетки, или вызвана рефлекторно вследствие паралича нервной системы.

Электрический шок представляет собой нервную реакцию организма на возбуждение электрическим током, которая проявляется в нарушении нормального дыхания, кровообращения и обмена веществ. При длительном шоковом состоянии может наступить смерть.

Если оказана необходимая врачебная помощь, то шоковое состояние может быть снято без дальнейших последствий для человека.

Из вышесказанного становится понятно, что на тяжесть поражения человека электрическим током влияет много факторов. Наиболее неблагоприятный исход поражения будет в случаях, когда прикосновение к токоведущим частям произошло влажными руками в сыром или жарком помещении.

Поражение человека электрическим током в результате электрического удара может быть различным по тяжести, т. к. на степень поражения влияет ряд факторов: величина тока, продолжительность его прохождения через тело, частота, путь, проходимый током в теле человека, а также индивидуальные свойства пострадавшего (состояние здоровья, возраст и др.). Основным фактором, влияющим на исход поражения, является величина тока, которая, согласно закону Ома, зависит от величины приложенного напряжения и сопротивления тела человека. Большую роль играет величина напряжения, т. к. при напряжениях около 100 В и выше наступает пробой верхнего рогового слоя кожи, вследствие чего и электрическое сопротивление человека резко уменьшается, а ток возрастает.

Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты при величине тока 1-1,5 мА и постоянного тока 5-7 мА. Эти токи называются пороговыми ощутимыми токами. Они не представляют серьезной опасности, и при таком токе человек может самостоятельно освободиться от воздействия.

При переменных токах 5-10 мА раздражающее действие тока становится более сильным, появляется боль в мышцах, сопровождаемая судорожным их сокращением. При токах 10-15 мА боль становится трудно переносимой, а судороги мышц рук или ног становятся такими сильными, что человек не в состоянии самостоятельно освободиться от действия тока.

Основным фактором, определяющим величину сопротивления тела человека (принято считать 1000 Ом), является кожа, ее роговой верхний слой, в котором нет кровеносных сосудов. Этот слой обладает очень большим удельным сопротивлением, и его можно рассматривать как диэлектрик. Внутренние слои кожи, имеющие кровеносные сосуды, железы и нервные окончания, обладают сравнительно небольшим удельным сопротивлением.

Внутреннее сопротивление тела человека является величиной переменной, зависящей от состояния кожи (толщины, влажности) и окружающей среды (влажности, температуры и т. д.).

При повреждении рогового слоя кожи (ссадина, царапина и пр.) резко снижается величина электрического сопротивления тела человека и, следовательно, увеличивается проходящий через тело ток. При повышении напряжения, приложенного к телу человека, возможен пробой рогового слоя, отчего сопротивление тела резко понижается, а величина поражающего тока возрастает.

Переменные токи 10-15 мА и выше и постоянные токи 50-80 мА и выше называются неотпускающими токами, а наименьшая их величина 10-15 мА при напряжении промышленной частоты 50 Гц и 50-80 мА при постоянном напряжении источника называется пороговым неотпускающим током.

Переменный ток промышленной частоты величиной 25 мА и выше воздействует не только на мышцы рук и ног, но также и на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть. Ток 50 мА при частоте 50 Гц вызывает быстрое нарушение работы органов дыхания, а ток около 100 мА и более при 50 Гц и 300 мА при постоянном напряжении за короткое время (1-2 с) поражает мышцу сердца и вызывает его фибрилляцию. Эти токи называются фибрилляционными. При фибрилляции сердца прекращается его работа как насоса по перекачиванию крови. Поэтому вследствие недостатка в организме кислорода происходит остановка дыхания, т. е. наступает клиническая (мнимая) смерть. Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. Чем больше время протекания тока через тело человека, тем тяжелее его результаты и больше вероятность летального исхода.

Большое значение в исходе поражения имеет путь тока. Поражение будет более тяжелым, если на пути тока оказывается сердце, грудная клетка, головной и спинной мозг.

Путь тока имеет еще то значение, что при различных случаях прикосновения будет различной величина сопротивления тела человека, а следовательно, и величина протекающего через него тока.

Наиболее опасными путями прохождения тока через человека являются: «рука — ноги», «рука — рука». Менее опасным считается путь тока «нога — нога».

Как показывает статистика, наибольшее число несчастных случаев происходит вследствие случайного прикосновения или приближения к голым, незащищенным частям электроустановок, находящихся под напряжением. Для защиты от поражения током голые провода, шины и другие токоведущие части либо располагают в недоступных местах, либо защищают ограждениями. В некоторых случаях для защиты от прикосновения применяют крышки, короба и т. п.

Поражение током может возникнуть при прикосновении к нетоковедущим частям электроустановки, которые оказываются под напряжением при пробое изоляции. В этом случае потенциал нетоковедущей части оказывается равным потенциалу той точки электрической цепи, в которой произошло нарушение изоляции.

Опасность поражения усугубляется тем, что прикосновение к нетоковедущим частям в условиях эксплуатации является нормальной рабочей операцией, поэтому поражение всегда является неожиданным.

Влияние на уровень электробезопасности режима нейтрали трехфазных электрических сетей

Место соединения концов фаз источника питания (генератора или трансформатора) называется нейтралью (точка 0).

  1. заземленная нейтраль,
  2. изолированная нейтраль,
  3. компенсированная нейтраль.

Заземленная нейтраль

Ток однофазного короткого замыкания в сети с заземленной нейтралью достаточно велик и сопровождается возникновением дуги, что делает невозможным использование таких сетей в угольных шахтах и помещениях, опасных в отношении взрыва и пожара. Поэтому сети с заземленной нейтралью могут использоваться в помещениях, не опасных в отношении взрыва и пожара. Защита от короткого замыкания осуществляется плавкими вставками или реле максимальной токовой защиты, что удешевляет эксплуатационные расходы. Напряжение поврежденной фазы при однофазном замыкании падает до 0, напряжения неповрежденных фаз меняются незначительно, поэтому нет повышенных требований к изоляции.

На промышленных предприятиях используется наиболее распространенная система 220/380 В с заземленной нейтралью. В случае прикосновения к фазному проводу через тело человека будет протекать ток
что очень опасно.

Прикосновение тела человека к фазному проводу в сети с заземленной нейтралью всегда опасно.

Изолированная нейтраль

При однофазном замыкании на землю в сети с изолированной нейтралью ток короткого замыкания определяется сопротивлением изоляции, которое, в свою очередь, определяется активным и емкостным сопротивлением. При хорошем состоянии изоляции и небольшой длине кабелей (емкость кабеля невелика) сопротивление изоляции достаточно велико, ток однофазного замыкания небольшой — возможно возникновение искрения при отсутствии дугового разряда, что делает возможным применение таких сетей во взрывоопасных и пожароопасных помещениях.

Читайте также:  Что такое номинальный ток для стабилизатора

Прикосновение к фазному проводу в сети с изолированной нейтралью может быть безопасным при хорошем состоянии изоляции, так как ток через тело человека определяется сопротивлением изоляции.

Ток с одной из фаз проходит через тело человека, через сопротивление изоляции на другие фазы. В сети 220/380 В при сопротивлении изоляции 60 кОм ток через человека:

что безопасно.

При большой длине кабельных линий суммарная емкость сети увеличивается, сопротивление изоляции снижается, прикосновение человека к фазному проводу может стать опасным. Кроме того, в случае пробоя изоляции одной из фаз и прикосновения к другой фазе на тело человека воздействует линейное напряжение и в токовой цепи отсутствует сопротивление изоляции, что гораздо опаснее. Поэтому необходим непрерывный контроль изоляции и немедленное отключение участка сети при пробое одной из фаз или опасном снижении сопротивления.

Компенсированная нейтраль

Нейтральная точка соединяется с землей через индуктивное сопротивление XL, примерно равное емкостному сопротивлению изоляции Хс, что приводит к образованию «электрической пробки», при которой емкостная проводимость сравнивается с проводимостью индуктивной.

Поскольку они соединены параллельно, суммарная проводимость становится равной примерно 0, а это соответствует бесконечно большому сопротивлению. Величина тока, протекающего через тело человека при прикосновении его к фазному проводу в сети с компенсированной нейтралью, существенно уменьшается.

Источник

Пути прохождения электротока через тело человека. Наиболее опасный путь

date image2014-02-04
views image28841

facebook icon vkontakte icon twitter icon odnoklasniki icon

Механические повреждения при поражении электрическим током. Электрический удар, электрический шок: — основные понятия.

Механические повреждения возникают вследствие резких непроизвольных судорожных сокращений мышц под действием электротока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей.

Электрический удар — то возбуждение живых тканей организма проходящим через них электротоком, сопровождающееся непроизвольным сокращением мышц, что может привести к полному прекращению функций жизненно важных органов человека – сердца и лёгких – а значит, и к гибели организма (по степени тяжести электроудары подразделяются на четыре степени).

Электрический шок — своеобразная реакция нервной системы организма в ответ на сильное раздражение электротоком.

Электрошок имеет две фазы:

I – фаза возбуждения,

II — фаза торможения и истощения нервной системы.

Схематически тело человека имеет пять «конечностей»: — голова, две руки и две ноги, и из комбинаций перечисленных конечностей получаются наиболее вероятные пути прохождения тока через тело человека, например: рука – рука, нога – нога, голова – ноги т.д.

Наиболее опасен продольный путь тока через тело человека (рука – нога, голова — нога), менее опасен – поперечный (рука – рука) и ещё менее опасен путь нога – нога.

7. Что влияет на поражение человека током?

На поражение человека электрическим током влияют: величина тока, проходящего через тело человека, род тока, частота, путь тока, длительность его воздействия, окружающая среда (влажность и температура воздуха, наличие токопроводящей пыли).

8. Что такое фибрилляционный ток? Как влияет величина тока на исход поражения?

Ток 100 мА и более (при частоте 50 Гц), проходя через тело человека по пути рука – рука или рука – ноги, раздражающе действуют на мышцу сердца. Это весьма опасно для жизни человека, поскольку спустя 1-2 сек. с момента попадания под действие электротока может наступить фибрилляция сердца. При этом прекращается кровообращение, что приводит к смерти.

Токи, которые вызывают фибрилляцию сердца называют фибрилляционными, а наименьший из них – пороговым фибрилляционным током – при частоте 50 Гц фибрилляционными являются токи от 100 мА до 5 А, а при постоянном токе от 300 мА до 5 А.

С увеличением частоты тока до 50 Гц опасность поражения несколько увеличивается, а при частоте свыше 50 Гц опасность поражения уменьшается, но сохраняется опасность ожогов.

9. Какие поражающие факторы являются основными?

При поражении электротоком основными факторами являются путь прохождения тока через тело человека и время его действия. Чем меньше продолжительность действия тока на организм человека, тем меньше опасность.

10. Каковы основные причины поражения электрическим током?

Основными причинами поражения электрическим током являются:

· прикосновение к токоведущим частям, находящимся под напряжением;

· прикосновение к нетоковедущим, но токопроводящим частям электрооборудования, оказавшимся под напряжением из-за неисправности изоляции или защитных устройств;

· попадание под шаговое напряжение;

· нарушение правил технической эксплуатации электроустановок и правил техники безопасности;

· допуск к обслуживанию электроустановок необученного персонала.

11. Что такое шаговое напряжение? Особенности поражения шаговым напряжением. Меры безопасности от данного вида электротравм.

Напряжение между двумя точками на поверхности земли в зоне замыкания фазы на землю, отстоящими друг от друга на расстоянии одного шага, называется шаговым напряжением.

Наибольшую величину шаговое напряжение имеет вблизи от места замыкания (касания земли оборванного провода). На расстоянии 8 м. и более от места замыкания оно практически не представляет опасности.

Довольно интенсивная судорога может возникнуть, если шаговое напряжение равно 100-150 В. При прохождении тока по пути нога – нога такое напряжение ещё не опасно, но оно может послужить причиной падения человека, вследствие чего увеличивается расстояние между точками земли, которых он может коснуться руками и ногами, а, следовательно, ток будет протекать по более опасному пути. При величине шагового напряжения более 250 В. Человек может потерять сознание и даже может произойти паралич дыхания.

Для избегания попадания под воздействие шагового напряжения необходимо не приближаться к оборванному проводу на расстояние менее 8-ми метров.

В случае необходимости перемещения в зоне шагового напряжения (помощь пострадавшему, эвакуация и т.д.) нужно перемещаться с особой осторожностью, используя средства защиты для изоляции от земли (диэлектрические галоши, боты, ковры, изолирующие подставки) или предметы, плохо проводящие электрический ток (сухие доски, брёвна и т.п.). Без средств защиты перемещаться в зоне растекания тока замыкания на землю следует, передвигая ступни ног по земле и не отрывая их одну от другой, а препятствия (рельсы и т.п.) преодолевать прыжком одновременно обеими ногами.

12. Что представляет собой электрическое сопротивление тела человека?

Электрическое сопротивление тела человека – это сопротивление току, проходящему по участку тела между двумя электродами, приложенными к поверхности тела человека. Оно состоит из сопротивления двух тонких слоёв кожи и внутреннего сопротивления рук и корпуса.

Величина сопротивления тела человека зависит от состояния рогового слоя кожи (порезы, ссадины и т.д.); также существенно влияет на величину сопротивления состояние нервной системы человека: при стрессах, в состоянии алкогольного или наркотического опьянения и т.п. – сопротивление тела человека уменьшается.

В практических расчётах сопротивление тела человека принимается равным 1000 Ом.

13. Как влияет род и частота тока на исход поражения?

При невысоких напряжениях (до 100 В) постоянный ток примерно в 3-4 раза менее опасен, чем переменный частотой 50 Гц; при напряжениях 400-500 В. опасность их сравнивается, а при более высоких напряжениях постоянный ток даже опаснее переменного.

О влиянии частоты тока смотри вопрос 7.

14. Что называется электроустановками? Как разделяются электроустановки по условиям безопасности?

Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования, включая помещения где они установлены, предназначенных для производства, передачи, трансформации распределения электроэнергии и преобразования её в другой вид энергии.

По условиям электробезопасности электроустановки подразделяют на две категории:

· напряжением до 1000 В.

· напряжением свыше 1000 В.

15. В каких случаях необходимо защитное заземление?

Электроустановки необходимо заземлять:

· при напряжении 380 В. и выше переменного тока и 440 В. и выше постоянного;

· в помещениях с повышенной опасностью, особо опасных (см. вопрос 24) и в наружных электроустановках – при напряжении 42 В. и выше переменного и 110 В. и выше постоянного токов;

· во взрывоопасных помещениях – независимо от напряжения и рода тока.

16. Какие существуют виды заземления?

Существуют три вида заземления:

1. Защитное заземление выполняется с целью обеспечения безопасности людей при нарушении изоляции токоведущих частей.

2. Рабочее заземление выполняется для обеспечения нормальных режимов работы установок.

3. Атмосферное заземление предназначено для защиты зданий и сооружений от действия атмосферного электричества.

17. Что называется защитным заземлением? Принцип его действия.

Защитным заземлением называется преднамеренное соединение с землёй металлических частей установки, в обычных условиях находящихся не под напряжением, но могущих оказаться под напряжением вследствие нарушения изоляции токоведущих частей установки.

Действие защитного заземления заключается в том, что оно снижает напряжение между корпусом оборудования, оказавшимся под напряжением, и землёй до безопасного значения.

18. Какое напряжение считается опасным для обслуживающего персонала?

Для обслуживающего персонала опасным считается напряжение:

· 42 В и более переменного тока;

· 110 В и более постоянного тока.

Читайте также:  При силе тока умирает человек

19. Что такое защитное отключение?

Защитное отключение – это система, автоматически отключающая электроустановку при возникновении опасности поражения человека током.

Отключение должно осуществляться автоматами по надёжности действия удовлетворяющими специальным техническим условиям.

20. В чём заключается оперативное обслуживание электроустановок?

Оперативное обслуживание заключается:

· в постоянном наблюдении за состоянием и режимом работы всего электрооборудования;

· периодических осмотрах оборудования;

· проведении в электроустановках работ, выполняемых в порядке текущей эксплуатации;

· производстве оперативных отключений;

· подготовке схемы и рабочего места для ремонтных бригад, допуске их к работе, надзоре за ними во время работы и восстановлении схемы после окончания всех работ.

21. Какие организационные мероприятия необходимы для обеспечения безопасности работ с электроустановками?

К организационным мероприятиям, обеспечивающим безопасность работ в электроустановках, относятся:

· оформление работы нарядом-допуском, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;

· допуск к работе;

· надзор во время работы;

· оформление перерыва в работе, переводов на другое рабочее место, окончание работы.

22. Какие технические мероприятия необходимы для обеспечения безопасности работ с электроустановками?

Для подготовки рабочего места при работах со снятием напряжения должны быть выполнены в указанном порядке следующие технические мероприятия:

· проведены необходимые отключения и приняты меры, препятствующие подаче напряжения к месту работы вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры (снятие предохранителей, запирание рукояток или дверец шкафа, укрытие кнопок, установка изолирующих накладок между контактами и т.п.);

· на приводах ручного и на ключах дистанционного управления коммутационной аппаратурой вывешены запрещающие плакаты;

· проверено отсутствие напряжения на токоведущих частях, на которых должно быть заложено заземление для защиты людей от поражения электрическим током;

· наложено заземление (включены заземляющие ножи, а там, где они отсутствуют, установлены переносные заземления);

· вывешены предупредительные и предписывающие плакаты, ограждены при необходимости рабочие места и оставшиеся под напряжением токоведущие части. В зависимости от местных условий токоведущие части ограждаются до и после наложения заземления.

23. Классификация электрозащитных средств?

Средства, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля называются электрозащитными средствами.

Электрозащитные средствабывают основные и дополнительные.

Основные электрозащитные средства — средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановки, и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства — средства защиты, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

24. Какие основные и дополнительные электрозащитные средства применяются в электроустановках напряжением до 1000 В.?

В установках напряжением до 1000 В. применяются средства защиты от поражения электрическим током:

Основные — изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажные инструменты с изолирующими рукоятками.

Дополнительные — диэлектрические калоши, диэлектрические ковры, переносные заземления, изолирующие подставки и накладки, оградительные устройства, плакаты и знаки безопасности.

25. Знаки и плакаты по электробезопасности?

Плакаты предупреждающие:

Источник

Поражение электрическим током

Широкое применение электрического оборудования на производстве и в разнообразной электротехники в быту способствует возрастанию уровня электротравматизма, которым сопровождается поражение электрическим током. Электрический ток при определенных условиях является опасным поражающим фактором, негативно воздействующим на человеческий организм. На рис. ниже показана кисть человеческой руки, травмированная электротоком.

Электротравма кисти руки

Воздействие электротока на человеческий организм

Механизм негативного влияния электротока на человеческий организм является сложным и многообразным. При своем прохождении через тело ток оказывает следующие виды воздействий:

  1. Термическое воздействие, проявляющееся нагревом кожи и ткани внутренних органов вплоть до ожогов, приводящих к повреждениям кровеносных сосудов, нервных волокон и мозга и омертвению тканей участков тела. При термических воздействиях отмечаются резкие функциональные расстройства систем жизнеобеспечения человека, например, внезапно возникающие кровотечения;
  2. Электролитическое воздействие, вызывающее электролиз лимфатической жидкости и разложение крови, нарушая физико-химический состав всех тканей организма;
  3. Биологическое воздействие, выражающееся в нарушении нормального протекания биоэлектрических процессов, присущих живой материи. Действие биотоков, управляющих внутренними движениями тканей человеческого организма, нарушается, что приводит к непроизвольным противоестественным судорожным сокращениям сердечных мышц и легкого. Живые клетки и ткани, с которыми связана жизнеспособность организма, приходят в опасное возбуждение от воздействия тока и могут погибнуть;
  4. Механическое действие электрического тока, которое вызывает расслоение и разрыв тканей за счет взрывоподобного по скорости образования пара из крови и лимфатической жидкости. Механическое действие провоцирует сильнейшие сокращения мышц, вплоть до разрыва мышечных волокон;
  5. Световое действие, характеризующееся электроофтальмией после воздействия мощного потока ультрафиолетового излучения от вспышки электрической дуги. Внешние признаки поражения электрическим током проявляются воспалением наружной оболочки глаза.

На рис. ниже показан глаз с признаками электроофтальмии.

Проявления электроофтальмии

Понятие электротравмы

Патофизиологическим результатом разнообразных воздействий электротоков различной силы на человека является поражение электрическим током, трактуемое ГОСТ Р МЭК 61140-2000 «Защита от поражения электрическим током. Общие положения по безопасности…» как «…физиологическое воздействие проходящего через тело человека электрического тока» (п.3.1). Весь комплекс изменений анатомических соотношений в организме, нарушений функций систем, органов и тканей, сопровождающийся соответствующей реакцией организма на действие протекающего через него тока принято называть электротравмой. В обиходной речи электротравмой называют повреждения электрическим током, фиксируемые визуально (ожог) или по ответной реакции организма следующего вида:

  • ощущение механического толчка или удара, когда происходит поражение током;
  • мышечные судороги с болевым эффектом;
  • фибрилляция сердца, выражающаяся в нарушении работы сердечной мышцы, вплоть до остановки сердца и клинической смерти.

Обратите внимание! Вероятность поражающего травмирования электротоком относится к категории неявных опасностей, поскольку отсутствуют внешние атрибуты и признаки реальной грозящей опасности, чтобы люди могли бы заблаговременно их обнаружить при помощи органов чувств (например, по аналогии «горячий-холодный» или «тупой-острый» предмет).

Степень тяжести поражения от удара электрическим током, в зависимости от реакции организма, подразделяется следующим образом:

  1. Первая степень – мышечные судороги, повышается артериальное давление, сильное головокружение, но без потери сознания;
  2. Вторая степень – мышечные судороги и потеря сознания, которое быстро возвращается, но надолго сохраняется состояние испуга. Иногда наблюдается частичный паралич;
  3. Третья степень – судороги групп мышц, приводящие к разрывам мягких тканей и вывихам суставов. Нарушаются сердечная деятельность и дыхание, происходит потеря сознания. Из-за спазма голосовых связок пострадавший не в состоянии кричать, чтобы позвать на помощь;
  4. Четвертая степень – паралич дыхательной системы, фибрилляция сердечной мышцы. Клиническая смерть.

Важно! Клинической смертью называют переходный период, наступающий с момента остановки дыхания и работы сердца. У пострадавшего от удара током отсутствуют признаки жизни, его сердце не работает, дыхание отсутствует. Однако при поражении током в период клинической смерти жизненные функции органов сразу не угасают, что дает шанс на сохранение жизни человеку, если вовремя оказать ему соответствующую помощь – искусственное дыхание и массаж сердца.

Классификация электротравматизма

Электротравмы классифицируют по следующим признакам:

  1. По месту получения травмы электротоком;

В общем случае определены три вида травматических поражений токами различного характера происхождения:

  • Производственные электротравмы – если человек пострадал на работе, работая с оборудованием, задействованным от электричества;
  • Бытовые травмы от электричества, полученные в бытовых условиях. В основном, бытовому электротравматизму подвержены домохозяйки и маленькие дети. Основные причины – игнорирование требований техники безопасности в обращении с бытовой техникой (стиральными машинами, электромикроволновками, утюгами);
  • Природные электротравмы – как результат воздействия природного электричества. Классический пример – удар молнией, представляющий собой разряд атмосферного электричества.

На рис. ниже показана типовая бытовая электротравма – ожог руки после удара током от неисправного электроприбора.

Бытовая электротравма

  1. По характеру действия тока (длительность воздействия);

Временной характер воздействия тока приводит к двум видам электротравматизма:

  • Мгновенным электротравмам, полученным от действия электрического разряда в течение короткого промежутка времени (так называемый удар током). Для них присущи опасные для жизни повреждения, требующие оказания срочной медицинской помощи;
  • Хроническому протеканию электротравматизма, связанному с длительным и незаметным влиянием электрических полей на человека. Например, хроническим электротравмам подвержен персонал, работающий вблизи мощных высоковольтных генераторов. Симптомы поражения хронического характера проявляются в повышенной утомляемости, треморе, повышенном артериальном давлении, нарушении сна, ухудшении памяти.
  1. По характеру поражения определены:
  • Местные электротравмы, характеризующиеся местным (локальным) повреждением определенной части тела;
  • Общие электротравмы, представляющие собой обширные поражения организма в результате протекания через него электрического тока. При общих электротравмах возможны остановки сердца и дыхания, приводящие к клинической смерти пострадавшего человека.

Согласно статистическим данным, повреждения от ударов током распределены следующим образом:

  • 20% всех случаев приходятся на местные электротравмы;
  • 25% – травмы общего характера;
  • 55% являются смешанными, в которых одновременно проявляются местные и общие поражения организма.

Виды местных электротравм

Местные электротравмы (далее по тексту МЭ) представляют собой ярко выраженные локальные нарушения анатомической целостности тканей, включая костные, вызванные поражающим действием электрического тока и дуги. В большинстве случаев МЭ излечиваются, функции органов пострадавшего частично или полностью восстанавливаются. Случаи гибели людей от МЭ довольно редки, чаще всего смерть наступает от тяжелого ожога. Опасность МЭ и сложность лечения оцениваются в соответствии со следующими факторами:

  • место, характер и степень повреждения ткани/тканей;
  • реакция организма на локальное повреждение.
Читайте также:  Измеритель сигнализатор тока утечки исту

Наиболее характерными являются следующие виды МЭ:

  1. Электроожоги, являющиеся результатом термической агрессии электротока при его протекании через тело;
  2. Электрические знаки (метки), представленные уплотненными участками бледно-желтого цвета в виде резко очерченных пятен на коже пострадавшего от удара током. Могут выглядеть как резаная или колотая рана либо как обугленный участок тела. На участке с электрической меткой кожа теряет чувствительность;
  3. Металлизация кожи, обусловленная проникновением в верхние слои человеческой кожи микрочастиц металла, расплавившегося при горении электрической дуги, или заряженных металлочастиц из ванн с электролитом;

Дополнительная информация. При коротком замыкании или отключении рубильника под нагрузкой образуется мощный тепловой поток, инициирующий расплавление металла токоведущих элементов. Возникающие при КЗ динамические силы разбрызгивают частицы расплавленного металла, которые разлетаются по сторонам с высокой скоростью.

  1. Механические повреждения как следствие неконтролируемых резких судорожных сокращений мышц при ударе током. Отмечаются вывихи суставов и разрывы связок, разрывы нервных волокон и кровеносных сосудов;
  2. Электроофтальмия.

Рассмотрим подробнее электроожоги как наиболее часто встречающиеся МЭ.

Электроожоги

На долю электроожогов приходится практически 60% всех МЭ. По условиям происхождения электроожоги разделяют на две категории травматизма:

  • токовые (или контактные) ожоговые травмы, возникающие в процессе протекания электротока непосредственно через человеческое тело при прямом контакте человека с токоведущими элементами;
  • дуговые ожоги, обусловленные поражением от электрической дуги.

На рис. ниже приведен пример вспышки дуги, зафиксированной камерой видеонаблюдения.

Вспышка дуги

Токовые ожоги возникают в электроустановках с небольшим напряжением, не превышающим 2 кВ. При более высоких напряжениях обычно образуется искра или дуга, которые становятся причиной ожога. По степени тяжести поражения токовые ожоги подразделяют следующим образом:

  1. I степень – незначительные повреждения верхних слоев кожного эпидермиса, покраснения и припухлость кожи без образования волдырей. Травма легко залечивается в домашних условиях, иногда даже не требует лечения;
  2. II степень – наряду с обычным повреждением верхнего слоя на коже выступают волдыри, заполненные желтоватым экссудатом (в обиходе волдыри от ожога просто называют пузырями). При небольших участках ожога вполне достаточно стационарного лечения на дому;
  3. III степень – кожа поражена по всей толще с развитием некроза, не допускающего ее самостоятельной регенерации (омертвление кожи и подкожной клетчатки);
  4. IV степень –полное некротическое поражение кожи, клетчатки, мышц, костей и сухожилий. Визуально последствия выражены обугленными конечностями и другими участками тела.

Важно! Для лечения ожогов III и IV степени требуется хирургическое вмешательство.

На рис. ниже проиллюстрированы степени ожоговых повреждений электротоком.

Степени тяжести электроожогов

Для возникновения дуговых ожогов нет необходимости в прохождении тока через человека. При горении дуги образуется мощный поток тепловой энергии, способный нанести сильнейшие ожоги вплоть до III и IV степени тяжести.

Общие электротравмы

Для общих электротравм (далее по тексту ОЭ) характерно поражение двух и более участков тела или сразу нескольких внутренних органов. Прямую угрозу жизнедеятельности организма представляют нарушения нормального функционирования различных систем жизнеобеспечения, включая работу сердца, мозга и центральной нервной системы.

Повреждающие возможности электрического тока зависят от следующих основных факторов:

  1. Рода тока (переменный или постоянный) и частоты тока;
  2. Силы тока и величины приложенного напряжения;
  3. Продолжительности действия тока;
  4. Пути электротока;

Принято выделять следующие петли вероятного прохождения тока через организм (см. рис. ниже):

  • поз. 1 – «рука-рука»;
  • поз. 2 – «левая рука-ноги»;
  • поз. 3 – «правая рука-нога»;
  • поз. 4 – «руки-ноги»;
  • поз. 5 – «нога-нога»;
  • поз. 6 – «голова-ноги»;
  • поз. 7 – «голова-рука»;
  • поз. 8 – «голова-нога».

Возможные пути тока через организм

Наиболее опасными по степени поражения считаются петли «голова-рука» (поз. 7) и «голова-нога» (поз.8), для которых характерно прохождение тока через головной и спинной мозг. Наименее опасной считается петля «нога-нога» (поз. 5), практически не затрагивающая жизненно важные органы.

  1. Сопротивления человеческого тела и состояния кожного покрова;
  2. Индивидуальных особенностей человеческого организма;
  3. Влажности окружающего воздуха.

Несчастных случаев, связанных с поражением электрическим током, можно избежать, если строго соблюдать требования техники безопасности при эксплуатации электрооборудования или не пользоваться неисправными бытовыми электроприборами (например, в быту часто пренебрегают аккуратным подсоединением проводов к розеткам, пользуясь оголенными проводами, что чревато электротравмой). Правильное проектирование, монтаж или ремонт электрических устройств обеспечивают их безопасную эксплуатацию.

На рис. ниже показано опасное подсоединение проводов к розеткам.

Опасное подсоединение к розеткам

Видео

Источник



Путь электрического тока через тело человека

Варианты путей прохождения электрического тока через тело человека:

1 — «рука—рука»; 2 — «рука—ноги»; 3 — «рука—нога»; 4 — «руки—ноги»; 5 — «нога—нога»; 6 — «голова—ноги»; 7 — «голова—рука»; 8 — «голова—нога»

Путь электрического тока через тело человека во многом определяет степень поражения организма. Наиболее часто в практике встречаются такие варианты:

человек дотрагивается двумя руками до токоведущих проводов или частей оборудования, находящихся под напряжением. В этом случае движение тока идет от одной руки к другой через легкие и сердце. Путь этот принято называть «рука—рука»;

при прикасании одной рукой к источнику тока, стоя двумя ногами на земле; путь протекания тока «рука—ноги»;

при стекании тока на землю от неисправного электрооборудования. Земля в радиусе до 20 м получает потенциал напряжения, уменьшающийся с удалением от заземлителя. Человек, стоящий обеими ногами в этой зоне, оказывается под разностью потенциалов, так как каждая из его ног получает разный потенциал напряжения, зависящий от удаленности от заземлителя. В результате возникает электрическая цепь «нога—нога», напряжение которой называют шаговым;

прикосновение головой к токоведущим частям может создать электрическую цепь, где путь тока будет: «голова—руки» или «голова—ноги».

Наиболее опасными являются те варианты, в которых в зону поражения попадают жизненно важные органы и системы организма — головной мозг, сердце, легкие Это цепи: «голова—руки», «голова—ноги», «руки—ноги», «рука—рука».

Электрическое сопротивление человека.

Факторы состояния человека, существенно увеличивающие вероятность смертельного поражения человека электрическим током:

всё, что увеличивает темп работы сердца – усталость, возбуждение, принятие алкоголя, наркотиков, некоторых лекарств, курение, болезни;

все, что уменьшает сопротивление кожи – потливость, порезы, принятие алкоголя.

Общее электрическое сопротивление между двумя электродами, наложенными на тело одного и того же человека, следует разделить на две части: сопротивление кожи и кровеносных сосудов и сопротивление нервов. Сопротивление тела человека являйся активной величиной, состоящей из внутренней и наружной составляющих. Внутреннее сопротивление у всех людей примерно одинаково и составляет 600 – 800 Ом. Сопротивление тела человека определяется в основном величиной наружного сопротивления, а конкретно – состоянием кожи рук толщиной всего лишь 0.2 мм (в первую очередь ее наружным слоем – эпидермисом).

Примеров тому немало, вот один из них. Рабочий опускает в электролитическую ванну средний и указательный пальцы руки и получает смертельный удар. Оказалось, что причиной гибели явился имевший место порез кожи на одном из пальцев. Эпидермис не оказал своего защитного действия, и поражение произошло при явно безопасной петле тока.

Если принять сопротивление кожи за 1, то сопротивление внутренних тканей, костей, лимфы, крови составит 0,15 – 0,20, а сопротивление нервных волокон – всего лишь 0,025 («нервы» – отличные проводники электрического тока!).

Сопротивление тела не является постоянной величиной: в условиях повышенной влажности оно снижается в 12 раз, в воде – в 25 раз, резко снижает его принятие алкоголя.

Зато во время сна оно возрастает в 15-17 раз. В качестве минимального сопротивления тела человека принимают величину 1000 Ом, но вообще эта величина может колебаться от нескольких сотен Ом до нескольких МОм. Таким сопротивлением обладает сухая, неповрежденная, чистая кожа.

Фаза кардиоцикла.

Опасность совпадения момента прохождения тока через сердце с фазой Т кардиоцикла

Каждый цикл сердечной деятельности состоит из двух периодов: одного, называемого диастолой, когда желудочки сердца, находясь в расслабленном состоянии, заполняются кровью, и другого, именуемого систолой, когда сердце, сокращаясь, выталкивает кровь в артериальные сосуды.

Наиболее уязвимым сердце оказывается в фазе Т, продолжительность которой около 0,2 с. Поэтому если во время фазы Т через сердце проходит ток, то, как правило, возникает фибрилляция сердца; если же время прохождения тока не совпадает с фазой Т, то вероятность возникновения фибрилляции резко уменьшается.

Т – период, когда заканчивается сокращение желудочков и они переходят в расслабленное состояние.

При длительности прохождения тока, равной или превышающей время кардиоцикла (0,75 – 1 с), ток “встречается” со всеми фазами работы сердца, в том числе с наиболее уязвимой фазой Т; это весьма опасно для организма. Если же время воздействия тока меньше продолжительности кардиоцикла на 0,2 с или более, то вероятность совпадения момента прохождения тока с фазой Т, а следовательно и, опасность поражения резко уменьшается.

Если время прохождения тока совпадает с фазой Т, то и в этом случае вероятность возникновения фибрилляции сердца зависит от длительности воздействия тока.

Источник