Меню

Расчет сложной электрической цепи постоянного тока методом узловых напряжений

ElectronicsBlog

Обучающие статьи по электронике

Электротехника Часть 5 Методы расчёта электрических цепей

Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

Схема для расчёта по законам Кирхгофа

Пример электрической цепи для расчёта по законам Ома и Кирхгофа.

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

    Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид

Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3 и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Метод контурных токов

Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже

Метод контурных токов

Расчет цепи методом контурных токов.

Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.

В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях

Читайте также:  Ток покоя бмв е60

Остальные же токи можно найти как разность двух контурных токов

В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.

Метод узловых напряжений

Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает

где q – количество узлов в электрической цепи.

Принцип расчёта электрической цепи заключается в следующем:

  1. Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
  2. Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
  3. После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.

В качестве примера возьмём предыдущую цепь и составим систему уравнений

Метод узловых потенциалов

Схема для решения уравнений методом узловых потенциалов.

В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа

Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома

В результате получившаяся система будет иметь следующий вид

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны

Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник

Метод узлового напряжения (двух узлов)

ads

Наиболее простым методом расчета электрической цепи с двумя узлами – является метод узлового напряжения или метод двух узлов.

Важно отличать метод узлового напряжения (метод двух узлов) от метода узловых напряжений.

Содержание

Метод узлового напряжения (двух узлов)

Рисунок 1 – Электрическая цепь с двумя узлами

Рисунок 1 – Электрическая цепь с двумя узлами

Определим разность потенциалов между двумя узлами цепи А и B.

Найдём потенциал точки А, перемещаясь по первой ветви от узла B до А.

Исходя из выражения (1) можно записать:

Выразим ток первой ветви

где r1 и g1 – сопротивление и проводимость первой ветви соответственно.

Аналогично составляются уравнения для оставшихся ветвей.

По первому закону Кирхгофа запишем уравнение для узла B

Подставим в вышеуказанное уравнение выражения токов (2-5).

Читайте также:  Как двигаться прямой ток

Раскрыв скобки, находим узловое напряжение U:

Общее выражение узлового напряжения

Исходя из вышеизложенного, узловое напряжение равно отношению алгебраической суммы произведений ЭДС на проводимости соответствующих ветвей к сумме проводимостей всех ветвей. ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

Давайте рассмотрим применения метода на конкретном примере.

Пример решения задач методом двух узлов (метод узлового напряжения)

Пример. Электрическая цепь постоянного тока представлена на рисунке 2. Определить токи в ветвях методом двух узлов, если ЭДС источников равна E1 = 40 В, E2 = 50 В, E3 = 10 В, а сопротивления r1 = 10 Ом, r2 = 20 Ом, r3 = 15 Ом, r4 = 12 Ом.

Метод узлового напряжения (двух узлов)

Рисунок 2 – Электрическая цепь

Порядок расчёта:

Метод двух узлов

  1. Так как действительные направления токов до расчёта цепи нам неизвестны — произвольно указываем направления токов в ветвях, например, как на Рисунке 3.

Рисунок 3

  1. Определим проводимость ветвей.

  1. Найдем напряжение U. Для этого воспользуемся формулой 6.

В числителе записываем произведения ЭДС на проводимости соответствующих ветвей, причем ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

В знаменателе указываем сумму проводимостей всех ветвей:

Подставляем раннее найденные значения проводимостей и значения ЭДС указанные в условии задачи:

  1. Определим токи в ветвях. С учетом направления ЭДС

Подставляем численные значения

Токи I3 и I4 получились с отрицательными значениями, следовательно их направление противоположно ранее принятому.

Рисунок 4 – Реальные направления токов.

Рисунок 4 – Реальные направления токов.

Правильность решения можно проверить при помощи баланса мощностей.

Так же для себя правильность решения задачи можно проверить выполнением первого закона Кирхгофа, а именно:

Источник

Расчет сложной электрической цепи постоянного тока методом узловых напряжений

Методы расчета сложных электрических цепей постоянного тока

1. Метод узловых и контурных уравнений

В основе расчета лежат первый и второй законы Кирхгофа.

  1. Произвольно выбираем направление тока в ветвях.
  2. Произвольно выбираем направление обхода контуров.
  3. Зная полярность источников, проставляем направление ЭДС.
  4. Составляем уравнения по первому закону Кирхгофа. Их должно быть но одно меньше, чем узлов.
  5. Составляем уравнения по второму закону Кирхгофа из расчета, что общее число уравнений должно быть равно числу неизвестных токов.
  6. Решаем систему уравнений и определяем неизвестные токи. Если в результате решения какой-либо ток окажется со знаком «-», то направление его противоположно выбранному.
  1. 1=r2=0;
  2. 1=0,3 Ом;
  3. 2=1 Ом;
  4. 3=24 Ом;

Итак, на схеме рисуем направления токов (1), согласно этим направлениям рисуем направления обхода контуров (2), согласно полярности источников питания ставим направления ЭДС (3).

Согласно первому закону Кирхгофа:

Теперь составляем уравнения по второму закону Кирхгофа:

Получили систему из трех уравнений. Решаем.

2. Метод контурных токов

Этот метод основан на втором законе Кирхгофа

  1. Произвольно выбираем направления контурных токов (рис.2)
  2. Составляем уравнения по второму закону Кирхгофа.

3. Определяем истинные токи.

3. Метод двух узлов

Этот метод применим для схем, имеющих два узла

  1. Выбираем произвольно направления токов в ветвях в одну и ту-же сторону (см. рис.3 – стрелки со штрихами).
  2. Определяем проводимости ветвей:
  1. Определяем напряжение между двумя узлами по формуле:
  1. Определяем токи в ветвях

Так как, значения I2 и I3 получились отрицательными, то эти токи будут противоположными по направлению (на рисунке показаны жирные сплошные стрелки).

4. Метод наложения или метод суперпозиции

Метод основан на том, что любой ток в цепи создается совместным действием всех источников питания. Поэтому можно рассчитать частичные токи от действия каждого источника питания отдельно, а затем, найти истинные токи как арифметическую составляющую частичных.

Источник



Читайте также:  Реактор ограничение тока назначение

Метод узловых напряжений

Дата публикации: 12 января 2015 .
Категория: Статьи.

В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения.

Рассмотрим сущность этого метода. В данной статье решение задач методом узлового напряжения рассмотрены на примерах.

На рисунке 1 изображена разветвленная электрическая цепь с двумя узловыми точками А и Б, между которыми включены четыре параллельные ветви. Три первые ветви имеют источники электродвижущих сил (ЭДС) (генераторы) с ЭДС E1, E2 и E3.

Рисунок 1. Метод узлового напряжения

Последовательно с генераторами в этих ветвях включены сопротивления r1, r2 и r3 (к ним могут быть отнесены и внутренние сопротивления самих генераторов). В последней ветви включено сопротивление r4. Положительные направления токов в каждой ветви выбраны от точки Б к точке А. Поскольку в первых трех ветвях направление тока совпадало с направлением ЭДС источников электрической энергии, то последние работают в режиме генераторов. Если напряжение между узловыми точками А и Б обозначить U, то ток в первой ветви:

аналогично для остальных ветвей:

Применяя для узловой точки А первый закон Кирхгофа, будем иметь:

Заменив токи их выражениями, последнее уравнение записываем так:

Мы получили формулу узлового напряжения.

В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей. В знаменателе формулы дана сумма проводимостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на рисунке 1, то она входит в формулу для узлового напряжения со знаком минус. В общем виде формулу для узлового напряжения можно записать так:

Применяя формулу для узлового напряжения, решим следующий пример.

Пример 1. Для цепи, представленной на рисунке 1, даны ЭДС генераторов E1 = 110 В, E2 = 115 В, E3 = 120 В; внутреннее сопротивление генераторов r01 = 0,2 Ом, r02 = 0,1 Ом, r03 = 0,3 Ом. Сопротивление ветвей r1 = 2,3 Ом, r2 = 4,9 Ом, r3 = 4,7 Ом, r4 = 5 Ом. Определить токи в ветвях.

Расчет цепей методом узловых напряжений начнем с определения проводимости каждой ветви:

Находим узловое напряжение:

Определяем токи в ветвях:

Знак минус у тока I4 показывает, что действительное направление тока обратно тому, которое показано на рисунке 1.
Рассмотрим работу двух генераторов параллельного возбуждения с одинаковыми ЭДС (E1 = E2) и одинаковыми внутренними сопротивлениями (r01 = r02). Схема включения генераторов показана на рисунке 1. Пусть E1 = E2 = 110 В, r01 = r02 = 0,2 Ом. Сопротивление потребителя r3 = 1 Ом. Определить мощность, развиваемую генераторами.

Применяя формулу узлового напряжения, будем иметь:

Мощности, создаваемые генераторами:

Приведенный пример показывает, что при одинаковых ЭДС и одинаковых внутренних сопротивлениях генераторов мощности, отдаваемые каждым генератором в сеть, также равны.

Пусть теперь ЭДС второго генератора E2 стала равной 121 В.

Тогда узловое напряжение

Мощности, создаваемые генераторами:

Следовательно, при параллельной работе генераторов постоянного тока с одинаковым внутренним сопротивлением более загруженным окажется тот генератор, ЭДС которого больше.

Рассмотрим, наконец, случай, когда ЭДС параллельно работающих генераторов одинаковы, но внутренние сопротивления различны.

Пример 2. Дано: ЭДС генераторов E1 = E2 = 110 В, внутренние сопротивления генераторов r01 = 0,2 Ом, r02 = 0,25 Ом, сопротивление внешней части цепи r = 1 Ом. Определить токи генераторов.

Вычисляем узловое напряжение:

При параллельной работе генераторов постоянного тока с одинаковыми ЭДС, но с различными внутренними сопротивлениями более загруженным окажется тот генератор, который имеет меньшее внутреннее сопротивление.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник