Меню

Синхронный компенсатор реактивный ток

Синхронные компенсаторы

Синхронные компенсаторы 2

Синхронные компенсаторы (СК) используют для генерирования в электросеть реактивной мощности с целью повышения общего коэффициента мощности, стабилизации стандартного уровня напряжения в местах большого сосредоточения потребительских нагрузок, снижения потерь электроэнергии и общей оптимизации работы энергетических систем.

Конструктивно компенсатор представляют собой электродвигатель синхронного типа облегчённой конструкции, функционирующий в двигательном режиме без активной нагрузки, другими словами — на холостом ходу, исключительно на выработку реактивной энергии. Поэтому компенсаторы, устанавливаемые на питающих подстанциях, часто называют генераторами реактивной мощности. К числу наиболее мощных приемников реактивной мощности относят асинхронные электродвигателя, являющиеся приводом многих подвижных устройств.

Но в часы спада потребительских нагрузок, нередко возникает потребность в потреблении из электросети реактивной мощности, так как в такой ситуации напряжение в сети увеличивается и для поддержания его стандартного значения требуется загрузить сеть индуктивными токами. С этой целью все синхронные компенсаторы оснащаются автоматическим регулятором возбуждения, который подстраивает значение тока возбуждения таким образом, что напряжение на выводах компенсатора остается практически неизменным.

В зависимости величины от номинальной мощности синхронные компенсаторы имеют несколько типов систем возбуждения:

— электромашинное возбуждение с подвозбудителем;

Ток компенсатора опережает напряжение на 90 градусов в режиме перевозбуждения. Уменьшая величину тока возбуждения СК, по аналогии с синхронными электродвигателем, можно перевести СК в режим недовозбуждения. При этом ЭДС — меньше напряжения в месте его подключения , ток компенсатора отстает от напряжения на 90 градусов.

Синхронные компенсаторы – это мощные электрические машины. Стандартный ряд номинальных мощностей изменяется в пределах от 10-160 тыс. кВА. Коэффициент мощности варьируется в пределах 0,92-0,95, при этом число полюсов – 8 либо 6, что соответствует частоте обращения ротора 750, 1000об/мин, соответственно. Обычно они имеют горизонтальное исполнение вала, устанавливают их в подстанционных помещениях либо под открытым небом. При наружной установке корпус компенсаторов имеет герметичное исполнение.

Выпускают компенсаторы с системами охлаждения двух типов:

— воздушной (для агрегатов с номинальной мощностью до 25МВА);

— водородной (на валу устанавливают мощные вентиляторы, обеспечивающие интенсивную циркуляцию газа).

Для выполнения асинхронного пуска синхронные компенсаторы оснащаются пусковыми обмотками, для их запуска используется способ реакторного пуска, а в определенных ситуациях — прямого.

К числу достоинств синхронных компенсаторов принято относить:

— способность плавного автоматического регулирования величины реактивной мощности;

— возможность увеличения реактивной мощности за счет увеличения/уменьшения тока возбуждения при снижении напряжения в электросети.

Источник

Синхронный компенсатор

Принцип действия, предназначение синхронного компенсатора. Мощность переменного тока, активная и реактивная мощность, их физический смысл. Практические задачи на определение мощности синхронного компенсатора. Охрана труда при работе с генераторами.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 31.05.2016
Размер файла 219,8 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

компенсатор мощность реактивный

1. Теоретическая часть

1.1 Основные термины и понятия

1.2 Принцип действия и предназначения СК

2. Практическая часть

3. Графическая часть

Электримчество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса, и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества.

Одним из первых электричество привлекло внимание греческого философа Фалеса в VII веке до н. э., который обнаружил, что потёртый о шерсть янтарь (др. — греч. ?лекфспн: электрон) приобретает свойства притягивать легкие предметы. Однако долгое время знание об электричестве не шло дальше этого представления. В 1600 году появился сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провел опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шелк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создает первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создает американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году Закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока —гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделенных смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создает на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привел Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединенную теорию электрослабых взаимодействий.

1. Теоретическая часть

1.1 Основные термины и понятия

Синхронный компенсатор (СК) представляет собой синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. При работе в режиме перевозбуждения СК является генератором реактивной мощности. Наибольшая мощность СК в режиме перевозбуждения называется его номинальной мощностью. При работе в режиме недовозбуждения СК является потребителем реактивной мощности. По конструктивным условиям СК обычно не может потреблять из сети такую же реактивную мощность, которую он может генерировать. Изменение тока возбуждения СК обычно автоматизируется. При работе СК из сети потребляется активная мощность порядка 2—4% от номинальной реактивной мощности. Являются элементами «пассивной» компенсации реактивной мощности, иными словами, при использовании некоторого количества синхронных двигателей вместо асинхронных потребляемая из сети реактивная мощность уменьшается, что уменьшает и расходы на компенсацию, но с другой стороны, увеличивает расходы на содержание и обслуживание синхронных электродвигателей.

Мощность переменного тока.

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Читайте также:  Что принимается за направление электрического тока в проводнике

Активная мощность.

Единица измерения — ватт (русское обозначение: Вт; международное: W).

Среднее за период значение мгновенной мощности называется активной мощностью:

В цепях однофазного синусоидального тока

где и — среднеквадратичные значения напряжения и тока, — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи или её проводимость по формуле

В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность.

Единица измерения — вольт-ампер реактивный (русское обозначение: вар; международное: var).

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения и тока , умноженному на синус угла сдвига фаз между ними

(если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью и активной мощностью соотношением:

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина для значений от 0 до плюс 90° является положительной величиной. Величина для значений от 0 до ?90° является отрицательной величиной. В соответствии с формулой

реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут, как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Полная мощность.

Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А; международное: V·A).

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи и напряжения на её зажимах:

связана с активной и реактивной мощностями соотношением:

где — активная мощность, — реактивная мощность (при индуктивной нагрузке , а при ёмкостной ).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность.

Мощность, аналогично импедансу, можно записать в комплексном виде:

где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности . Действительная часть равна активной мощности , а мнимая — реактивной мощности с корректным знаком в зависимости от характера нагрузки.

Компенсация реактивной мощности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.

Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7—?0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют:

· уменьшить нагрузку на трансформаторы, увеличить срок их службы,

· уменьшить нагрузку на провода, кабели, использовать их меньшего сечения,

· улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения),

· уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях,

· избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности,

· снизить расходы на электроэнергию.

1.2 Принцип действия и предназначения СК

Синхронный компенсатор — синхронный двигатель, не выполняющий механической работы. Его назначение — компенсация реактивной мощности. Если нагрузить его механической работой, он не сможет компенсировать реактивную составляющую в нужном диапазоне.

У него два режима работы:

Не будем углубляться в теорию работы синхронных машин, а рассмотрим отдельно каждый из режимов работы синхронного компенсатора.

Перевозбужденный режим. Так как компенсатор работает на холостом ходу, то согласно теории ток идеального холостого хода должен быть равен нулю, хотя на самом деле это не так. Выполняется равенство

Если увеличить ток возбуждения (Iв) больше нуля Iв ? 0, то в двигателе образуется ЭДС и соответственно — машина выходит из электрического равновесия и возникает ток , который будет отставать от ? ,, на 90 0 . Соответственно в сеть будет отдаваться реактивная составляющая. На рисунке а) приведена векторная диаграмма для данного случая.

Рис. а) векторная диаграмма работы в перевозбужденном режиме

Недовозбужденный режим. Если уменьшить Iв, в двигателе образуется ЭДС, соответственно — следствием , который будет отставать от ?на 90 0 , но будет опережать ,на 90 0 . Соответственно с сети будет забираться реактивная составляющая. На рисунке б) приведена векторная диаграмма для данного случая.

Рис. б) векторная диаграмма работы в недовозбужденном режиме

Можно сделать вывод, что синхронный компенсатор работает в двух режимах: компенсации и потребления реактивной составляющей. Это значит, что он может не только отдавать, но и потреблять, что позволяет поддерживать баланс мощности в цепи. Он снабжается автоматической системой управления возбуждением и в автоматическом режиме регулирует cosц цепи. Также обладает большой инерционностью, что не позволяет ему быстро реагировать на изменение параметров цепи. При установке его в сеть с резко-переменной нагрузкой нужно максимально оптимизировать настройки регуляторов САУ, чтоб машина не пошла в разнос, так как это чревато аварийными отключением подстанции из-за бросков тока в сеть. Строятся на мощность до Sн = 100 000 кВА. Имеют явнополюсную конструкцию с 2р= 6 или 8 — тихоходные. Компенсаторы большой мощности делаются с водородным охлаждением.

Для асинхронного пуска снабжаются пусковыми обмотками в полюсных наконечниках или делают их с массивными полюсами. Пускаться они могут как прямым пуском, так и с помощью реакторов. Иногда используют гонный асинхронный двигатель для разгона машины до подсинхронной скорости. Наиболее часто имеют напряжение питания статора 6 кВ, 10 кВ и садятся на соответствующие линии ГПП.

Для возбуждения синхронного компенсатора чаще всего используют тиристорный преобразователь. Он прост в управлении, обладает малой инерционностью, дешев, по сравнению с другими устройствами, не требует постоянного обслуживания и быстро ремонтируем. Современные возбудители оборудованы микропроцессорной системой управления, которые могут в автоматическом режиме вычислять реактивную мощность и регулировать возбуждение машины, тем самым поддерживая баланс мощности. Ниже приведена функциональная схема системы автоматического регулирования (САУ):

Также ранее применялись, а кое-где и до сих пор используются, электромашинное возбуждение. Как правило, работает с очень малой чувствительностью и очень большой инерционностью по отношению к цепи. Дорог в обслуживании и эксплуатации. При выходе из строя долго находится в ремонте. Ниже показана самая примитивная схема электромашинного возбудителя: синхронный компенсатор является обратимым устройством. Он дорог, занимает много места, а также вызывает шум и иногда вибрации. Эксплуатация его не дешевая, а в случае выхода из строя вращающихся элементов требует длительного ремонта. В сравнении с современными средствами компенсации реактивной мощности является устаревшим.

2. Практическая часть

Пример №1.

Потребитель, включенный в сеть переменного тока напряжением Uc=6,3 кВ. потребляет мощность 1500 кВ•А, при коэффициенте мощности cos y=0,7. Определить мощность СК, необходимого для повышения коэффициента мощности в сети до cos y=0,95.

До включения СК

реактивная мощность сети Q= S*sin y=1500•0,7=1050кВ•Ар,

Источник

Синхронный компенсатор реактивной мощности

Синхронный компенсатор – синхронный двигатель не выполняющий механической работы. Его назначение — компенсация реактивной мощности. Если нагрузить его механической работой, он не сможет компенсировать реактивную составляющую в нужном диапазоне.

У него два режима работы:

Перевозбужденный режим. Так как компенсатор работает на холостом ходу, то согласно теории ток идеального холостого хода должен быть равен нулю, хотя на самом деле это не так. Выполняется равенство . Если увеличить ток возбуждения (Iв) больше нуля Iв ≠ 0, то в двигателе образуется ЭДС и соответственно — машина выходит из электрического равновесия и возникает ток , который будет отставать от ∆ , , на 90 0 . Соответственно в сеть будет отдаваться реактивная составляющая. На рисунке а) приведена векторная диаграмма для данного случая.

Рис. а) векторная диаграмма работы в перевозбужденном режиме

Недовозбужденный режим. Если уменьшить Iв, в двигателе образуется ЭДС, соответственно — следствием , который будет отставать от ∆ на 90 0 , но будет опережать , на 90 0 . Соответственно с сети будет забираться реактивная составляющая. На рисунке б) приведена векторная диаграмма для данного случая.

Рис. б) векторная диаграмма работы в недовозбужденном режиме

Можно сделать вывод, что синхронный компенсатор работает в двух режимах:компенсации и потребления реактивной составляющей. Это значит что он может не только отдавать но и потреблять, что позволяет поддерживать баланс мощности в цепи. Он снабжается автоматической системой управления возбуждением и в автоматическом режиме регулирует cosφ цепи. Также обладает большой инерционностью, что не позволяет ему быстро реагировать на изменение параметров цепи. При установке его в сеть с резко-переменной нагрузкой нужно максимально оптимизировать настройки регуляторов САУ, чтоб машина не пошла в разнос, так как это чревато аварийными отключением подстанции из-за бросков тока в сеть. Строятся на мощность до Sн = 100 000 кВА. Имеют явнополюсную конструкцию с 2р= 6 или 8 — тихоходные. Компенсаторы большой мощности делаются с водородным охлаждением.

Для асинхронного пуска снабжаются пусковыми обмотками в полюсных наконечниках или делают их с массивными полюсами. Пускаться они могут как прямым пуском, так и с помощью реакторов. Иногда используют гонный асинхронный двигатель для разгона машины до подсинхронной скорости. Наиболее часто имеют напряжение питания статора 6 кВ, 10 кВ и садятся на соответствующие линии ГПП.

Для возбуждения синхронного компенсатора чаще всего используют тиристорный преобразователь. Он прост в управлении, обладает малой инерционностью, дешев, по сравнению с другими устройствами, не требует постоянного обслуживания и быстро ремонтируем. Современные возбудители оборудованы микропроцессорной системой управления, которые могут в автоматическом режиме вычислять реактивную мощность и регулировать возбуждение машины, тем самым поддерживая баланс мощности. Ниже приведена функциональная схема системы автоматического регулирования (САУ):

Также ранее применялись, а кое-где и до сих пор используются, электромашинное возбуждение. Как правило, работает с очень малой чувствительностью и очень большой инерционностью по отношению к цепи. Дорог в обслуживании и эксплуатации. При выходе из строя долго находится в ремонте.

Вывод: синхронный компенсатор является обратимым устройством. Он дорог, занимает много места, а также вызывает шум и иногда вибрации. Эксплуатация его не дешевая, а в случае выхода из строя вращающихся элементов требует длительного ремонта. В сравнении с современными средствами компенсации реактивной мощности является устаревшим.

Проблема компенсации реактивной мощности (КРМ) вызвана высокой загрузкой элементов систем распределения электрической энергии (ЭЭ) потоками реактивной мощности (РМ) вследствие значительного её потребления из сетей. [1] В сетях напряжением 6–10 кВ технологические потери достигают около 8–12 % от отпущенной в сеть электроэнергии. Потери электроэнергии зависят от параметров электрической схемы, а также от конструкции сетей и режимов нагрузки. По данным произведенных расчетов для реальных сетей 6–10 кВ, потери электроэнергии зависят от передаваемой потребителям величины реактивной мощности. Например, при изменении коэффициента реактивной мощности (tgφ) от 0,5 до 0,8 потери электроэнергии увеличиваются примерно на 20 %. По произведенному анализу показаний счетчиков активной и реактивной мощности установлено, что на шинах 6–10 кВ источника питания коэффициент реактивной мощности в процессе эксплуатации изменяется и достигает значения 0,77–0,85, из-за чего потери электроэнергии достигают существенных значений. Наиболее эффективным способом снижения потерь электрической энергии в сетях 6–10 кВ является компенсация реактивной мощности. [2] Помимо изменения потерь электроэнергии и tgφ, посредством генерации реактивной мощности регулируется величина напряжения у потребителя по формуле: (1) где: UЦП — напряжение центра питания; РН и QН — активная и реактивная мощность нагрузки потребителя; RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем. Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов. Существует три вида компенсации: Индивидуальная компенсация применяется при большой единичной мощности электроприемников. В этом случае компенсирующие устройства устанавливаются у электроприемников и присоединяются к зажимам электроприемников. Однако подобная компенсация хорошо подходит лишь для постоянной нагрузки, то есть в тех случаях, где РМ каждой из нагрузок меняется незначительно с течением времени. Групповая компенсация применяется для случая компенсации нескольких расположенных рядом и включаемых одновременно индуктивных нагрузок, подключенных к одному распределительному устройству. Устройства компенсации реактивной мощности устанавливаются в узлах нагрузки. Централизованная компенсации используется в системах, имеющих большое количество потребителей (нагрузок) с большим разбросом суточного коэффициента мощности, то есть для переменных нагрузок. В системах такого типа индивидуальная компенсация не используется, так как резко возрастает стоимость (из-за большого количества конденсаторов) и возникает большая вероятность перекомпенсации. Устройства компенсации реактивной мощности устанавливаются в центре питания. Рис. 1 Виды компенсации Рассмотрим основные типы компенсирующих устройств: Батареи статических конденсаторов (БСК); Фильтро-компенсирующие устройства (ФКУ); Синхронные компенсаторы; Синхронные двигатели (СД). БСК состоит из групп силовых конденсаторов, путем параллельно — последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали. Рис. 2 Принципиальные схемы батарей конденсаторов: а — соединение конденсаторов по схеме треугольник, б — соединение конденсаторов по схеме звезда При соединении конденсаторов звездой реактивная мощность батареи: (2) При соединении конденсаторов треугольником реактивная мощность батареи: (3) Из приведенных формул видно, что существенным недостатком БСК является квадратичная зависимость генерируемой реактивной мощности от напряжения, что может являться причиной лавины напряжения. Батареи конденсаторов бывают регулируемые (управляемые) и нерегулируемые. В нерегулируемых БСК число конденсаторов неизменно, а величина реактивной мощности зависит только от величины напряжения. При выборе БСК, суммарная мощность нерегулируемых батарей конденсаторов не должна превышать наименьшей реактивной нагрузки сети, иначе переток реактивной мощности в режиме минимума нагрузок может быть направлен в систему. В регулируемых батареях конденсаторов в зависимости от режима автоматически или вручную изменяется число включенных конденсаторов. При этом изменяется емкость БСК и мощность, выдаваемая в сеть. БСК очень чувствительны к высшим гармоникам, которые значительно снижают ее электрическую прочность. Поэтому были созданы специальные фильтро-компенсирующие устройства, которые могли работать в сетях с высшими гармониками. Конструктивно ФКУ это БСК с использованием специальных фильтров. В режиме перевозбуждения синхронные двигатели генерируют реактивную мощность, а в режиме недовозбуждения — потребляют реактивную мощность, что является их главным достоинством. Но, по сравнению с БСК, СД имеют более сложную конструкцию и систему включения. Обычно СД участвуют в технологическом процессе предприятии и для компенсации реактивной мощности их специально приобретать не нужно. Существует специальная конструкция синхронного двигателя, когда он не несет активной нагрузки, а используется только для выработки реактивной мощности, такое устройство получило название синхронный компенсатор. Если СД уже установлены на промышленном предприятии по условиям технологии, их следует в первую очередь полностью использовать для КРМ. Поэтому при необходимости выполнения КРМ на напряжение 6–10 кВ следует рассматривать возможность получения дополнительной реактивной мощности от СД, если их коэффициент загрузки КСД

Сравнение БСК сСД Сравнительные характеристики БСК СД Срок службы 8–10 лет 15–20 лет Система включения Простая Сложная Потери активной мощности на выработку 1 квар реактивной мощности 0,003–0,005 кВт [4] 0,013–0,015 кВт [5] Конструкция Простая (без вращающихся частей) Более сложная Регулирование РМ Ступенчатое Плавное (определяется плавностью изменения тока возбуждения) Может только генерировать РМ Может генерировать и потреблять РМ Чувствительность к высшим гармоникам Высокая чувствительность Менее чувствительны Зависимость генерации РМ от напряжения Квадратичная зависимость Не зависит от напряжения Из приведенной выше информации видно, что у каждого из основных типов компенсирующих устройств есть достоинства и недостатки, поэтому выбор типа такого устройства будет зависеть от мощности и распределения реактивной нагрузки. В случае, когда на предприятии установлены синхронные двигатели, то целесообразно в первую очередь использовать их для компенсации реактивной мощности, если же их будет недостаточно, то только тогда устанавливают дополнительные компенсирующие устройства. Устанавливать маломощные СД лишь для компенсации реактивной мощности экономически невыгодно, поэтому в таких случаях рекомендуется применять БСК

Сравнительные характеристики БСК СД
Система включения Простая Сложная

Потери активной мощности

на выработку 1 квар

реактивной мощности 0,003–0,005 кВт ; 0,013–0,015 кВт

Конструкция Простая(без вращающихся частей) Более сложная

Регулирование РМ Ступенчатое Плавное (определяется плавностью изменения тока возбуж

Зависимость генерации РМ от напряжения Квадратичная зависимость Не зависит от напряжения

В случае, когда на предприятии установлены синхронные двигатели, то целесообразно в первую очередь использовать их для компенсации реактивной мощности, если же их будет недостаточно, то только тогда устанавливают дополнительные компенсирующие устройства. Устанавливать маломощные СД лишь для компенсации реактивной мощности экономически невыгодно, поэтому в таких случаях рекомендуется применять БСК.

2. Отклонение напряжения электропитания.

Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

Отклонение напряжения в той или иной точке сети происходит под воздействием медленного изменения нагрузки в соответствии с её графиком.

ГОСТом установлены следующие значения этого показателя:

— для сетей, напряжением до 1 кВ: нормальное 5 %; максимальное 10 %;

— для сетей, напряжением 6-20-35 кВ: значение показателя определяется по специальным методикам.

Причины выхода показателя за пределы норм

Источник



Синхронные компенсаторы в электрических сетях

Синхронные компенсаторыСинхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу.

Основные потребители электрической энергии, кроме активной мощности, потребляют от генераторов системы реактивную мощность. К числу потребителей, требующих большие намагничивающие реактивные токи для создания и поддержания магнитного потока, относятся асинхронные двигатели, трансформаторы, индукционные печи и другие. В связи с этим распределительные сети обычно работают с отстающим током.

Реактивная мощность, вырабатываемая генератором, получается с наименьшими затратами. Однако передача реактивной мощности от генераторов связана с дополнительными потерями в трансформаторах и линиях передач. Поэтому для получения реактивной мощности становится экономически выгодным применение синхронных компенсаторов, располагаемых на узловых подстанциях системы или непосредственно у потребителей.

Синхронные двигатели благодаря возбуждению постоянным током они могут работать с cos = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок.

Синхронным компенсатор — синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения.

В перевозбужденном режиме ток опережает напряжение сети, т. е. является по отношению к этому напряжению емкостным, а в недовозбужденных — отстающим, индуктивным. В таком режиме синхронная машина превращается в компенсатор — в генератор реактивного тока.

Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу.

Синхронные компенсаторыВ связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности . Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Для того чтобы улучшить коэффициент мощности и соответственно уменьшить угол сдвига между током и напряжением от значения φсв до φк нужна реактивная мощность:

где Р — средняя активная мощность, квар; φсв — сдвиг фаз, соответствующий средневзвешенному коэффициенту мощности; φк — сдвиг фаз, который должен быть получен после компенсации; а — коэффициент, равный около 0,9, вводимый в расчеты с целью учета возможного повышения коэффициента мощности, без установки компенсирующих устройств.

Помимо компенсации реактивных токов индуктивных промышленных нагрузок, синхронные компенсаторы необходимы на ЛЭП. В длинных ЛЭП при малых нагрузках преобладает емкость линии, и они работают с опережающим током. Для того чтобы компенсировать этот ток, синхронный компенсатор должен работать с отстающим током, т. е. недовозбужденным.

При значительной нагрузке ЛЭП, когда преобладает индуктивность потребителей электроэнергии, ЛЭП работает с отстающим током. В этом случае синхронный компенсатор должен работать с опережающим током, т. е. перевозбужденным.

Изменение нагрузки на ЛЭП вызывает изменение потоков реактивных мощностей по величине и фазе, приводит к значительным колебаниям напряжения в линии. В связи с этим возникает необходимость его регулирования.

Синхронные компенсаторы обычно устанавливают на районных подстанциях.

Для регулирования напряжения в конце или середине транзитных ЛЭП могут быть созданы промежуточные подстанции с синхронными компенсаторами, которые должны регулировать либо поддерживать напряжение неизменным.

Работа таких синхронных компенсаторов автоматизируется, в связи с чем создается возможность плавного автоматического регулирования величины вырабатываемой реактивной мощности и напряжения.

Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска.

В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.

Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели, Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.

Номинальная полная мощность синхронного компенсатора соответствует его работе с перевозбуждением, т.е. номинальной мощностью синхронного компенсатора считается его реактивная мощность при опережающем токе, которую он может длительно нести в рабочем режиме.

Синхронные компенсаторы

Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме.

В большинстве случаев в недовозбужденном режиме требуются меньшие мощности, чем в перевозбужденном, но в некоторых случаях необходима большая мощность. Этого можно достигнуть увеличением зазора, однако это приводит к удорожанию машины, и поэтому в последнее время ставится вопрос об использовании режима с отрицательным током возбуждения. Поскольку синхронный компенсатор по активной мощности загружен только потерями, то, согласно он может работать устойчиво также с небольшим отрицательным возбуждением.

В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.

В конструктивном отношении компенсаторы принципиально не отличаются от синхронных генераторов. Они имеют такую же магнитную систему, систему возбуждения, охлаждения и др. Все синхронные компенсаторы средней мощности имеют воздушное охлаждение и выполняются с возбудителем и подвозбудителем.

В связи с тем, что синхронные компенсаторы не предназначены для выполнения механической работы и не несут активной нагрузки на валу, они имеют механически облегченную конструкцию. Компенсаторы выполняются как сравнительно тихоходные машины (1000 — 600 об/мин) с горизонтальным валом и явнополюсным ротором.

В качестве синхронного компенсатора может быть использован генератор, работающий вхолостую при соответствующем возбуждении. В перевозбужденном генераторе появляется уравнительный ток, являющийся чисто индуктивным относительно напряжения генератора и чисто емкостным относительно сети.

Следует иметь в виду, что перевозбужденная синхронная машина независимо от того, работает ли она генератором или двигателем, может рассматриваться относительно сети как емкость, а недовозбужденная — как индуктивность.

Для того чтобы перевести генератор, включенный в сеть, в режим синхронного компенсатора, достаточно закрыть доступ пара (или воды) в турбину. В таком режиме перевозбужденный турбогенератор начинает потреблять небольшую активную мощность из сети только для покрытия потерь вращения (механических и электрических) и отдает реактивную мощность в сеть.

В режиме синхронного компенсатора генератор может работать длительное время и зависит лишь от условий работы турбины.

При необходимости турбогенератор может быть использован в качестве синхронного компенсатора как при вращающейся турбине (вместе с турбиной), так и при отсоединенной, т. е. при разобранной муфте сочленения.

Вращение паровой турбины со стороны генератора, перешедшего в двигательный режим, может вызвать перегрев хвостовой части турбины.

Источник