Меню

Схема источник стабилизированного тока

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Стабилизатор для светодиодов

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Светодиодный светильник со стабилизацией тока

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

LED-светильник со стабилизатором тока

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Стабилизатор тока светодиодов

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Выходная характеристика полевого транзистора

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Генератор (стабилизатор) тока на MOSFET

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Схема включения TL431 в качестве стабилизатора тока

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

Схема светильника без пульсаций (LED-лампа на TL431)

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Читайте также:  Режим ограничения тока пространственным зарядом

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник

Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Условное графическое обозначение источника тока

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

beginner113-2.png

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

beginner113-3.png

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

beginner113-4.jpg

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

beginner113-5.jpg

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

beginner113-6.jpg

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Последовательно включенные светодиоды

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

beginner113-8.png

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

beginner113-9.png

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

ВАХ диодного стабилизатора тока

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

beginner113-12.png

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Читайте также:  Чем отличается генератор переменного тока от генератора постоянного тока кратко

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

beginner113-13.png

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Источник

Источники тока на полевых и биполярных транзисторах.

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.

На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
— Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
— Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока. » — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.

Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Источники тока на полевых и биполярных транзисторах

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Источник



Схемы стабилизаторов напряжения и тока

Стабилизированные источники питания необходимы для обеспечения независимости параметров электронного устройства от изменений питающего напряжения. Практически в любой современной аппаратуре имеется стабилизатор напряжения, а то и несколько. В таких устройствах часто применяются операционные усилители ( ОУ ), с помощью которых решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причём ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.
Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.
Следящие стабилизаторы, как правило, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.

Стабилизатор по схеме Рис.1 выдаёт напряжение Uвых большее, чем опорное напряжение стабилитрона VD1, а стабилизатор Рис.2 – меньшее. Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя VT2 увеличивают ток нагрузки, в нашем примере – до 100 мА, но можно и более с составным повторителем на мощном транзисторе.

Транзистор VT1 защищает выходной транзистор VT2 от перегрузок по току, причём датчиком тока служит резистор R8 небольшого сопротивления, включённый в цепь эмиттера транзистора VT2. Когда падение напряжения на нём превысит Uб-э=0,6 В, откроется транзистор VT1 и зашунтирует эмиттерный переход транзистора VT2. При токах нагрузки до 10…15 мА резисторы R7, R8 и транзисторы VT1, VT2 можно не ставить. Отметим, что в стабилитронах по схемам на Рис.1, 2 входное напряжение не должно превышать максимально допустимой суммы напряжений питания.

На Рис.3а приведена схема подобного стабилизатора в котором ОУ включён таким образом, что он сам питается стабилизированным напряжением. Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода ОУ DA1 смещён в сторону положительного напряжения с помощью стабилитрона VD3 и транзистора VT1. Выходной эмиттерный повторитель – составной ( VT2, VT3 ), а к базе защитного транзистора VT4 подключён делитель R4R5, что позволяет создать “падающую” характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А.

Термокомпенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001%. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1% за время не более 5 мкс.

Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме Рис.4. Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.
В случае необходимости получения отрицательного выходного напряжения необходимо в качестве повторителя применить p-n-p транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по-другому, если в аппаратуре требуются стабилизированные напряжения разной полярности.

На Рис.5 приведены две упрощённые схемы соединения стабилизаторов для получения выходных напряжения разного знака. В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго – выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +Uст и -Uст стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов ( несимметричные в общем случае ) связаны и регулирование напряжений осуществляется одним переменным резистором.

В случае если необходимо иметь два питающих напряжения с заземлённой средней точкой, то можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (Рис. 6). Если R1=R2, то равны и выходные напряжения относительно заземлённой средней точки. Через выходные транзисторы VT1 и VT2 протекают полные токи нагрузки, а падение напряжения на участках коллектор – эмиттер равны половине входного напряжения. Это надо иметь в виду при выборе радиаторов охлаждения.

Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами, только за счёт уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два – три раза. Недостаток ключевых стабилизаторов заключается в повышении уровня помех. Однако рациональное конструирование, и когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить “пролезание” высокочастотных помех в нестабилизированный источник первичного питания и нагрузку можно путём включения последовательно радиочастотных дросселей, рассчитанный на постоянный ток 1…3 А. В ключевых стабилизаторах напряжения с успехом применяются интегральные компараторы.

На Рис. 7 приведена схема релейного стабилизатора на базе микросхемы К554СА2. Здесь компаратор DA1 работает от источников напряжения +12 и -6 В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора VT1 (+18 В), вывода 2 – к стабилитрону VD6 (примерно +6 В), вывода 6 отрицательного питания – к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами VD3 – VD5, оно равно +4,5 В. Это напряжение подаётся на инвертирующий вход компаратора DA1, включённого по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор VT2, ключевой элемент на транзисторах VT3, VT4 и фильтр L1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном – до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения ( пульсации ) проходят без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.
Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор C7, автоматически меняется как период автоколебаний, так и время включённого состояния транзисторов VT3, VT4. Усилитель управления на компараторе DA1 и транзисторе VT2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет меньше, чем потенциал неинвертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного уровня стабилизации, т.е пульсирует. После включения транзисторов VT3, VT4 ток через дроссель L1 нарастает, его индуктивность и конденсатор С7 запасает энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L1C7 отдаёт некоторую часть запасённой энергии в нагрузку, причём полярность напряжения на дросселе L1 меняется и цепь питания замыкается через диод VD7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы VT3, VT4. Далее циклы повторяются.

В качестве дросселя L1 можно применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 – плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанный на ток подмагничивания не менее ожидаемого тока нагрузки и пригодный к использованию на частотах до 50 кГц.
Диод VD7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на Рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие. Конденсатор С7 из ряда К53 или танталовый типов К52-7А, К52-9, К52-10, С9 – ёмкостью не менее 15,…2,2 мкФ.
Большая потребность в стабилизаторах для питания аппаратуры привела к необходимости разработки и производства специальных линейных микросхем – стабилизаторах напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным или импульсным режимом управления. Стабилизаторы строятся как для положительных так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми микросхемами или ±15 В для питания аналоговых микросхем. К данной группе из выпускаемых стабилизаторов относятся категория регулируемых стабилизаторов КР142ЕН1 и К142ЕН2.

На базе микросхем КР142ЕН1,2 можно создавать стабилизаторы отрицательных напряжений Рис. 8. При этом стабилитрон VD1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора VT1 не должен превышать максимально допустимого тока стабилизатора, иначе следует применить составной транзистор.

Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения (Рис. 9). В таком стабилизаторе опорное напряжение установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задаётся делителем R2R3. Следует также иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

Также следует рассмотреть ещё один класс стабилизаторов – стабилизаторов тока, преобразующих напряжение в ток независимо от изменения напряжения нагрузки. Мощные источники тока предусматривают подключение к ОУ усилительных транзисторов.

На Рис.10 дана схема источника тока, а на Рис. 11 – схема приёмника тока. В обоих устройствах сила тока зависит от напряжения Uвх и номинала резистора R1, чем меньше входной ток ОУ и тем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

Схема простого мощного источника тока для зарядки устройства показана на Рис. 12. Здесь R4 – токоизмерительный проволочный резистор. Номинальное значение тока нагрузки Iн =ΔU/R4=5 A устанавливается примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение Uвх ≥ 18 В без учёта пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.
Более подробно по данной тематике можно найти в источнике:

В ПОМОЩЬ РАДИОЛЮБИТЕЛЮ” выпуск 91, МОСКВА издательство ДОСААФ СССР, 1985 стр. 39-53

Читайте также:  Комнаты в тока бока картинки

Источник