Меню

Способы изображения синусоидальных токов

Способы изображения синусоидальных токов

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.) называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Величина, обратная периоду, есть частота, измеряемая в герцах (Гц):

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01 ¸ 10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ) .

— амплитуда тока;

— амплитуда напряжения;

— амплитуда ЭДС.

Действующее значение переменного тока

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных ЭДС, напряжений
и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени ( t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

Векторное изображение синусоидально
изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени ( t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы.

На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Представление синусоидальных ЭДС, напряжений
и токов комплексными числами

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

тригонометрической или

алгебраической формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

Комплексное число удобно представить в виде произведения двух комплексных чисел:

Параметр , соответствующий положению вектора для t =0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол w t относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота есть его поворот относительно первоначального положения на угол ± a .

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды и оператора поворота :

Читайте также:  Исследование электрических цепей постоянного тока при смешанном соединении резисторов

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

— то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор с положительной полуосью +1:

Тогда мгновенное значение напряжения:

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при (второй квадрант)

а при (третий квадрант)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока по рис. 5 получим:

Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в раз:

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения

1. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?

2. Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?

3. В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?

4. Для заданных синусоидальных функций ЭДС и тока записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.

Источник

Способы изображения синусоидальных функций времени

Синусоидальные функции времени могут быть представлены тригонометрической формой записи, временными диаграммами, вращающимися векторами и комплексными числами.

Тригонометрическая форма записи тока, изменяющегося во времени по синусоидальному закону, может быть представлена выражением

где — мгновенное значение тока; — максимальное (амплитудное) значение тока; — угловая частота, характеризующая скорость изменения фазового угла; — текущее значение времени; — начальная фаза (начальный фазовый угол).

Геометрический смысл параметров, входящих в выражение (1.14), раскрывает временная диаграмма,представленная на рис.1.2 б. а б

Переход от временных диаграмм к вращающимся векторам для различных моментов времени показан на рис. 1.2 а, б. Очевидно, что вектор длиной вращается с постоянной угловой частотой . При этом за положительное направление вращения в электротехнике принимается направление против хода часовой стрелки. Проекция вращающегося вектора на ось ординат определяет мгновенное значение синусоидального тока.

В электротехнике, кроме мгновенных и максимальных значений синусоидальных величин, используются средние и действующие значения. Именно эти значения показывают большинство измерительных приборов, поэтому условимся, что далее в расчетах будут использоваться только действующие значениясинусоидальных электродвижущих сил (ЭДС), напряжений и токов.

Действующие значения синусоидальных ЭДС, напряжений и токов могут быть определены на основании максимальных значений с помощью следующих выражений:

На рис.1.2 а показано, что длина вращающегося вектора равна амплитудному значению синусоидальной величины. Однако следует отметить, что вращающиеся векторы могут иметь длину, равную действующему значению.

1.5. Метод комплексных чисел. Законы электрических цепей в комплексной форме

Метод комплексных чисел нашел широкое применение в электротехнике при расчетах электрических цепей синусоидального переменного тока. При этом в качестве векторов на комплексной плоскости изображаются синусоидальные функции времени (ЭДС, напряжения и токи).

Сущность расчета электрических цепей с помощью данного метода заключается в том, что графические операции над векторами заменяют алгебраическими действиями над комплексными числами.

В электротехнике, чтобы избежать сходства мнимой единицы iс силой тока, мнимую единицу обозначают буквой j.

При использовании метода комплексных чисел уравнения электрических цепей записывают на основании законов Ома и Кирхгофа.

Математическое выражение закона Ома в комплексной форме имеет вид

где — комплекс действующего значения силы тока (комплекс тока); — комплекс действующего значения напряжения, приложенного к цепи (комплекс напряжения); — полное комплексное сопротивление.

Отличие обозначения комплексного сопротивления от обозначения комплексных напряжения и тока связано с тем, что комплексное сопротивление не является синусоидальной функцией времени.

Математическое выражение первого закона Кирхгофа в комплексной форме имеет вид

где k – число комплексных токов, сходящихся в узле электрической цепи.

В соответствии с (1.17) сумма комплексных токов, сходящихся в узле электрической цепи, равна нулю.

Математическое выражение второго закона Кирхгофа в комплексной форме имеет вид:

где k – число комплексных напряжений вдоль замкнутого контура.

В соответствии с (1.18) сумма комплексных напряжений вдоль любого замкнутого контура равна нулю.

1.6. Понятие о полном комплексном сопротивлении

Составными элементами цепей синусоидального тока являются активное сопротивление R, индуктивность L и емкость C. Каждый из этих элементов оказывает сопротивление переменному току.

На активном сопротивлении R энергия электрического тока преобразуется в тепловую энергию. Такое преобразование является необратимым.

На индуктивности L происходит периодическое преобразование энергии электрического тока в энергию магнитного поля, накопление и обратное преобразование.

На емкости С происходит периодическое преобразование энергии электрического тока в энергию электрического заряда, накопление и обратное преобразование.

Поскольку процессы в индуктивности и емкости являются обратимыми, то эти элементы называют реактивными.

Индуктивность обладает реактивным сопротивлением, которое называют индуктивным сопротивлением

где f – частота переменного синусоидального напряжения, Гц; L – индуктивность, Гн.

Конденсатор обладает реактивным сопротивлением, которое называют емкостным сопротивлением

где С – емкость, Ф.

Если элементы R, L, C соединены последовательно, то полное комплексное сопротивление можем записать в виде

В соответствии с (1.21) очевидно, что полное комплексное сопротивление имеет действительную и мнимую части:

где R – активное сопротивление; X – реактивное сопротивление.

В (1.22) знак «плюс» перед ставится, если , в противном случае ставится знак «минус».

1.7. Угол сдвига фаз. Векторная диаграмма

Токи и напряжения на различных участках электрической цепи синусоидального тока могут не совпадать по фазе, например:

где — начальная фаза тока; — начальная фаза напряжения.

Тогда угол сдвига фаз между током и напряжением определяют как разность их начальных фаз

Угол сдвига фаз между током и напряжением на некотором участке электрической цепи зависит от характера сопротивления данного участка и определяется по формуле:

Наглядное представление о фазовом расположении различных векторов дает векторная диаграмма токов и напряжений.

Векторная диаграмма – это совокупность векторов на комплексной плоскости, изображающих синусоидальные функции времени одной и той же частоты и построенных с соблюдением их начальных фаз.

Читайте также:  Когда было сделано электро ток

Поскольку расчет электрических цепей синусоидального переменного тока ведется, как правило, с использованием метода комплексных чисел, то и векторные диаграммы также строятся на комплексной плоскости.

Векторные диаграммы чаще всего выполняют совмещенными, то есть на одной комплексной плоскости откладывают векторы токов и напряжений для отдельных участков цепи. При этом необходимо выбрать масштабы для токов и напряжений. Следует отметить, что для токов может быть выбран один масштаб, а для напряжений – другой. Это никоим образом не искажает общей картины, поскольку векторная диаграмма дает представление о взаимном расположении векторов и позволяет судить о наличии сдвига фаз между током и напряжением на отдельных участках электрической цепи.

Из курса высшей математики известно, что над векторами можно производить следующие действия: сложение, вычитание, умножение на число и деление на число.

В электротехнике принято с помощью векторной диаграммы складывать или вычитать векторы. Очевидно, что эти действия можно производить над векторами, имеющими одинаковую размерность.

На рис. 1.3 а показано сложение двух комплексных токов , по правилу параллелограмма. Результатом сложения является комплексный ток . На рис. 1.3 б показано вычитание комплексного напряжения из комплексного напряжения , в результате чего получаем комплексное напряжение .

Источник

Графическое изображение синусоидальных величин

Графическое изображение синусоидальных величинВ любой линейной цепи вне зависимости от вида элементов, входящих в цепь, гармоническое напряжение вызывает гармонический ток и, наоборот, гармонический ток порождает напряжения на зажимах этих элементов также гармонической формы. Обратим внимание, что индуктивности катушек и емкости конденсаторов предполагаются также величинами линейными.

В более общем случае можно сказать, что в линейных цепях при гармонических воздействиях все отклики имеют также гармоническую форму. Следовательно, в любой линейной цепи все мгновенные напряжения и токи имеют одну и ту же гармоническую форму. Если цепь содержит хотя бы несколько элементов, то синусоидальных кривых становится достаточно много, эти временные диаграммы накладываются друг на друга, чтение их сильно затрудняется, изучение становится предельно неудобным.

По указанным причинам изучение процессов, происходящих в цепях при гармонических воздействиях, производят не на кривых синусоидальной формы , а с помощью векторов , длины которых берутся пропорциональными максимальным значениям кривых, а углы, под которыми откладываются векторы, равными углам между началами двух кривых или началом кривой и началом координат. Таким образом, вместо временных диаграмм, занимающих много места, приводят их изображения в виде векторов, т. е. прямых линий со стрелками на концах, причем у векторов напряжения стрелки показывают заштрихованными, а у векторов тока оставляют незаштрихованными.

Совокупность векторов напряжений и токов в цепи называется векторной диаграммой . Правило отсчета углов на векторных диаграммах следующее: если необходимо показать вектор, отстающий от начального положения на некоторый угол, то поворачивают вектор на данный угол по часовой стрелке. Вектор, повернутый против часовой стрелки, означает опережение на указанный угол.

Например, на схеме рис. 1 показаны три временные диаграммы с одинаковыми амплитудами, но различными начальными фазами . Следовательно, длины векторов, соответствующих этим гармоническим напряжениям, должны быть одинаковыми, а углы — разными. Проведем взаимно перпендикулярные координатные оси, за начало отсчета примем горизонтальную ось с положительными значениями, в этом случае вектор первого напряжения должен совпадать с положительной частью горизонтальной оси, вектор второго напряжения — быть повернутым по часовой стрелке на угол ψ2, а вектор третьего напряжения — против часовой стрелки на угол (рис. 1).

Длины векторов зависят от выбранного масштаба, иногда их проводят произвольной длины с соблюдением пропорций. Поскольку максимальные и действующие значения всех гармонических величин отличаются всегда в одно и то же число раз (в √2= 1,41), то на векторных диаграммах можно откладывать как максимальные, так и действующие значения.

Временная диаграмма показывает значение гармонической функции в любой момент в соответствии с уравнением u = Um sin ωt. На векторной диаграмме также можно показать значения в каждый момент времени. Для этого необходимо представить вектор вращающимся в направлении против часовой стрелки с угловой скоростью ω и брать проекцию этого вектора на вертикальную ось. Получившиеся длины проекций будут подчиняться закону u = Um sinωt и, следовательно, представлять мгновенные значения в том же масштабе. Направление вращения вектора против часовой стрелки считают положительным, а по часовой стрелке — отрицательным.

Источник

Способы изображения синусоидальных величин на волновых и векторных диаграммах. Сдвиг по фазе. Величины, совпадающие по фазе, несовпадающие по фазе и противофазные.

Для анализа работы схем, работающих на переменном токе, часто используются графики и диаграммы. Синусоидальные величины можно изображать двумя способами:

1. на волновой диаграмме;

2. на векторной диаграмме.

Волновые диаграммы называются так потому, что график синусоиды напоминает волну. Все графики синусоидального тока, которые вы видели ранее, относятся к этому типу.

Волновые диаграммы строятся в прямоугольной системе координат. По вертикальной оси откладывается мгновенное значение тока, (или напряжения, или ЭДС). По горизонтальной оси откладывается фазовый уголωt. Он показывает на какой угол в радианах повернется рамка генератора за время t.

Вспомните, что полная синусоида генерируется за один оборот рамки генератора. Это соответствует углу поворота рамки на 360 градусов или 2π радиан. Таким образом, по горизонтальной оси, начало синусоиды соответствует углу в ноль радиан, а конец синусоиды – углу 2π радиан. Напомним, что число π=3,14.

На рис. 43 показана волновая диаграмма для синусоидального тока. Здесь начало положительного полупериода синусоиды совпадает с началом координат.

Рис. 43. Синусоидальная величина отображена на волновой диаграмме.

Начальная фаза синусоидальной величины равна нулю

Не всегда начало синусоиды совпадает с началом координат. Чтобы учесть смещение начала синусоиды относительно начала координат, вводят понятие начальной фазы.

Начальной фазой называется угол ψ (пси), на который начало синусоиды смещено относительно начала координат. На рис. 43 начальная фаза равна нулю. Синусоиды, для которых начальная фаза ψ не равна нулю, показаны на рис. 44.

Рис.44.Начальная фаза синусоиды не равна нулю

Заметьте, что знак начальной фазы может быть как положительным, так и отрицательным. Это зависит от того, в какую сторону смещена синусоида, относительно начала координат.

Запомните какой знак начальной фазы соответствует смещению синусоиды в каждую сторону.

На графиках отображено математическое выражение для синусоиды., соответствующее графику. Видно, что в математическом выражении учитывается знак начальной фазы.

Векторные диаграммы

Синусоидальную величину можно изобразить вектором (рис. 45) в прямоугольной системе координат. На векторных диаграммах линии осей координат, обычно, не изображаются, а лишь подразумеваются. На рис. 46, для лучшего понимания, оси координат X и Y показаны. В дальнейшем они отображены не будут.

Длина вектора в масштабе пропорциональна действующему или амплитудному значению. Вектор на диаграмме обозначается буквой (I, U или E). Буква ставится вблизи стрелки вектора. Рядом с диаграммой указывается масштаб. На рис. 45 показано, что один сантиметр длины вектора соответствует десяти вольтам. Измерив линейкой длину вектора и умножив число сантиметров на цифру масштаба можно узнать величину напряжения, которое изображает этот вектор.

Читайте также:  Чем отличается положительный ток от отрицательного

Векторы на диаграммах вращаются против часовой стрелки, вокруг своего начала, со скоростью ω. Направление вращения – против часовой стрелки.

Естественно, на рисунке векторы вращаться не могут. Сказанное о вращении векторов следует понимать следующим образом. На диаграмме векторы отображены для данного момента времени. В следующий момент времени их нужно отобразить повернувшимися на определённый угол по направлению вращения. Величина угла поворота соответствует скорости углу поворота рамки генератора.

Рис. 46. Изображение токов в виде вектора

На рис. 46, в виде векторов, показаны синусоидальные величины с различной начальной фазой ψ. Начальная фаза векторов на рис. 46 соответствуют синусоидам на рисунках 43 и 44.

Понятие сдвига по фазе возникает, если на одном графике отображаются сразу две синусоидальные величины, например два тока, два напряжения или же напряжение и ток. Понятие сдвига по фазе применяется только для синусоидальных величин одинаковой частоты.

Углом сдвига по фазе φ (фи) называется угол, на который смещены относительно друг друга начала двух синусоид. Значение угла фи может находится в интервале от нуля до π радиан (от нуля до180 градусов).

Две синусоидальные величины могут совпадать по фазе, не совпадать по фазе или находится в противофазе.

Сдвиг по фазе можно отобразить как на волновой, так и на векторной диаграмме. На рисунках 47, 48 и 49 показаны некоторые возможные случаи сдвига по фазе.

Синусоидальные величины совпадают по фазе. На рис. 47 токи i1 и i2 совпадают по фазе. Это означает, что они начинаются в один момент и с течением времени изменяются синхронно: оба возрастают или оба уменьшаются. На векторной диаграмме оба вектора направлены в одну сторону. Угол φ сдвига по фазе между синусоидальными величинами равен нулю.

Рис.47.Синусоидальные величины совпадают по фазе

Синусоидальные величины не совпадают по фазе. На рис. 48 показано, что токи i1 и i2 не совпадают по фазе (смещены по фазе). Видно, что синусоиды токов начинаются в разные моменты времени. Угол сдвига по фазе φ (на данном графике) составляет π/2 радиан (90 градусов). Вспомним, что величина сдвига по фазе может находится в пределах от нуля до π радиан (от нуля до180 градусов).

Можно сказать, что ток i2 отстаёт по фазе от тока i1 на угол π/2 радиан (90 градусов). Можно сказать и наоборот: ток i1 опережает по фазе ток i2 на угол π/2 радиан (90 градусов).

Рис.48.Синусоидальные величины не совпадают по фазе

На векторной диаграмме токи направлены друг к другу под углом φ.

Синусоидальные величины находятся в противофазе. На рис. 49 токи i1 и i2 изменяются в противофазе. В момент, когда один ток проходит положительный полупериод, другой проходит отрицательный и наоборот. Если один ток нарастает со знаком плюс, то другой – со знаком минус.

Угол φ сдвига по фазе между токами равен π радиан или 180 градусов. На векторной диаграмме противофазные векторы токов направлены в противоположные стороны.

Рис.49.Синусоидальные величины изменяются в противофазе

Источник



Способы изображения синусоидальных величин

date image2014-02-04
views image9423

facebook icon vkontakte icon twitter icon odnoklasniki icon

1. Графическое изображение синусоидальных величин.

Для сравнения электрических величин, изменяющихся по синусоидальному закону, необходимо знать разность их начальных фаз. Если, например, на каком — либо участке ток и напряжение имеют одинаковые начальные фазы, говорят, что они совпадают по фазе. Если график изменения во времени напряжения на каком — либо участке цепи пересекает координату времени t раньше графика тока , то говорят, что напряжение по времени опережает ток.

На рис. 3.2 для заданного элемента цепи представлены графики изменения во времени двух электрических величин: напряжения и тока . Из этих двух графиков видно, что они сдвинуты по фазе друг относительно друга на угол .

2. Векторное изображение синусоидальных величин.

При гармоническом изменении синусоидальной величины постоянной остаётся амплитуда. Этим можно воспользоваться для определения мгновенного значения электрической величины, не рассматривая графика её зависимости от времени.

Синусоидальную функцию времени можно изобразить вектором, равным амплитуде данной функции, равномерно вращающимся с угловой скоростью ω. При этом начальное положение вектора определяется (для t=0) его начальной фазой .

На рис. 3.3 показаны вращающийся вектор тока и график изменения тока во времени.

При изображении синусоидальной Э.Д.С., напряжений и токов из начала координат проводят векторы, равные амплитудным значениям этих величин, под углом к горизонтальной оси. Положительные углы откладываются против часовой стрелки.

Если вращать вектор против часовой стрелки, то в любой момент времени он составит с горизонтальной осью угол, равный . Проекция вращающегося вектора на ось ординат (ось мгновенных значений) равна мгновенному значению синусоидальной величины.

Совокупность векторов на плоскости, изображающих Э.Д.С., напряжения, токи одной частоты, называют векторной диаграммой.

При исследовании установившихся режимов векторы неподвижны, их длина равна действующим значениям электрических величин.

С помощью векторов можно производить геометрическое суммирование электрических величин.

Так, на рис. 3.4 показаны векторы токов и , а также вектор их геометрической суммы . Углы обозначают начальные фазы токов.

Векторные диаграммы широко используются при анализе электрических цепей переменного тока.

3. Представление синусоидальных величин комплексными числами.

Синусоидально изменяющуюся электрическую величину можно представить комплексным числом и изобразить в виде вектора на комплексной плоскости с прямоугольной системой координат.

Комплексное число состоит из действительной (вещественной) и мнимой частей. По оси ординат откладывают мнимую часть комплексного числа, а ось обозначают +j; по оси абсцисс – действительную часть комплексного числа, а ось обозначают +1.

На комплексной плоскости синусоидальная величина может изображаться в виде модуля и аргумента или в виде двух составляющих вектора, направленных по действительной и мнимой осям.

Например, синусоидальный ток представляют вектором , модулем которого является значение амплитуды тока , а аргументом – начальная фаза , которую можно выражать в радианах или в градусах (рис. 3.5).

Составляющим вектора по действительной оси будет , а по мнимой — , то есть

Вектор называют комплексной амплитудой тока.

Обычно при расчётах пользуются действующими значениями.

При построении векторных диаграмм точно фиксируют угол сдвига между векторами, а положение их относительно осей комплексной плоскости может быть произвольным, поэтому оси можно не изображать.

При анализе электрических цепей переменного тока приходится иметь дело с умножением и делением электрических величин. В этом случае удобно пользоваться комплексами этих величин, записанными в показательной форме:

где — оператор поворота единичного вектора относительно оси действительных величин.

Умножение на j означает поворот вектора на +90 градусов (в сторону, противоположную направлению движения стрелки часов).

Умножение на –j означает поворот вектора на угол –90 градусов (по часовой стрелке).

Источник