Меню

Стабилизатор напряжения с низким током потребления

Как выбрать стабилизатор напряжения (2018)

Как выбрать стабилизатор напряжения (2018)Любительский

Аватар пользователя

Содержание

Содержание

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

Читайте также:  Допустимое напряжения прикосновения тока через тело человека

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

Источник

Малошумящие LDO стабилизаторы Analog Devices

Малошумящие LDO стабилизаторы Analog Devices Малошумящие LDO стабилизаторы Analog Devices

Компания Analog Devices производит широкую линейку микросхем линейных регуляторов напряжения. Они обладают очень низким падением напряжения, быстрой переходной характеристикой, отличной стабилизацией напряжения нагрузки, а также очень широким диапазоном входных напряжений. Выходные токи варьируются от 100 мА до 10 А, с одним и несколькими выходами.
Во многих случаях к применяемому LDO-стабилизатору предъявляются жесткие требования по уровню шума на выходе. Это касается в первую очередь приложений работающих с аналоговыми сигналами малых амплитуд, в медицинской технике (термометры, аппараты ЭКГ, носимые мониторы и пр.), а также в системах безопасности и видеонаблюдения.
В малошумящих линейных регуляторах напряжения Analog Devices используется уникальная архитектура, обеспечивающая лучший в своем классе среднеквадратичный шум и сверхвысокие характеристики PSRR (подавление пульсаций питающего напряжения). Большинство серий малошумящих LDO регуляторов не требуют применения электролитического конденсатора и разработаны для работы с керамическими конденсаторами 1 мкФ на входе и выходе.
Типовая схема включения линейного регулятора напряжения ADP150 показана на рисунке 1.


Рис. 1 Типовая схема включения ADP150

ADP150 — линейный стабилизатор со сверхнизким шумом (9 мкВ) и малым падением напряжения, который работает в диапазоне входных напряжений от 2,2 В до 5,5 В и обеспечивает выходной ток до 150 мА. ADP150 доступен в 14 вариантах фиксированного выходного напряжения в диапазоне от 1,8 В до 3,3 В.

Уровень шума лучших образцов составляет всего 1.6 микровольта (!), причем это значение не зависит от величины входного напряжения.
Все стабилизаторы снабжены защитой от короткого замыкания и перегрева, что предотвращает выход устройства из строя при неблагоприятных условиях эксплуатации.

В таблице 1 приведены технические параметры основных серий малошумящих LDO-стабилизаторов Analog Devices.

Наименование компонента Количество выходов Входное напряжение, V Выходной ток, A Выходные напряжения, V Ток покоя, µA Уровень шума, µVrms Прямое падение, mV
ADP150 1 2.2 … 5.5 0.15 1.8, 2.5, 2.6, 2.75, 2.8, 2.85, 3.0, 3.3 10 9 105
ADP151 1 2.2 … 5.5 0.2 1.1, 1.2, 1.5, 1.8, 2.1, 2.5, 2.6, 2.75, 2.8, 2.85, 3.0, 3.3 10 9 140
ADP170 1 1.6 … 3.6 0.3 1.2, 1.25, 1.5, 1.8, 2.5, 2.8 23 30 66
ADP172 1 1.6 … 3.6 0.3 0.9, 1, 1.2, 1.26, 1.5, 1.65, 1.7, 1.8, 2.1, 2.9, 3 23 30 50
ADP1740 1 1.6 … 3.6 2 0.75, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.5 90 23 160
ADP1741 1 1.6 … 3.6 2 Регулируемый 90 23 160
ADP1752 1 1.6 … 3.6 0.8 0.75, 1.0, 1.1, 1.2, 1.25, 1.5, 1.8, 2.5 90 23 140
ADP1753 1 1.6 … 3.6 0.8 Регулируемый 90 23 140
ADP1754 1 1.6 … 3.6 1.2 0.75, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.5 90 23 200
ADP1755 1 1.6 … 3.6 1.2 Регулируемый 90 23 200
ADP1761 1 1.1 … 1.98 1 0.9, 0.95, 1, 1.1, 1.2, 1.25, 1.3, 1.5 4500 2 30
ADP1762 1 1.1 … 1.98 2 0.9, 0.95, 1, 1.1, 1.2, 1.25, 1.3, 1.5 4500 2 62
ADP1763 1 1.1 … 1.98 3 0.9, 0.95, 1, 1.1, 1.2, 1.25, 1.3, 1.5 4500 2 95
ADP1764 1 1.1 … 1.98 4 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.25, 1.3, 1.6 5000 2 47
ADP1765 1 1.1 … 1.98 5 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.25, 1.3, 1.5 5000 2 59
ADP7102 1 3.3 … 20 0.3 1.5, 1.8, 2.5, 3.0, 3.3, 5.0, 9.0 400 15 200
ADP7104 1 3.3 … 20 0.5 1.5, 1.8, 2.5, 3.0, 3.3, 5.0, 9.0, Регулируемый 400 15 350
ADP7105 1 3.3 … 20 0.5 1.8, 3.3, 5.0, Регулируемый 400 15 350
ADP7112 1 2. … 20 0.2 1.8, 2.5, 3.3, 5 50 11 200
ADP7118 1 2.7 … 20 0.2 1.8, 2.5, 3.3, 5 50 11 200
ADP7142 1 2.7 … 40 0.2 1.8, 2.5, 3.3, 5, Регулируемый 50 11 200
ADP7156 1 2.3 … 5.5 1,2 1.2, 1.8, 2.5, 2.8, 3.0, 3.3 4000 1.6 120
ADP7157 1 2.3 … 5.5 1,2 Регулируемый 4000 1.6 120
ADP7158 1 2.3 … 5.5 2 1.2, 1.8, 2.5, 2.8, 3.0, 3.3 4000 1.6 200
ADP7159 1 2.3 … 5.5 2 Регулируемый 4000 1.6 200
ADP7182 1 -28 … -2.7 0.2 -1.2, -1.5, -1.8, -2.5, -3, 5, -5 33 18 185
ADP7183 1 -5.5 … -2 0.3 -0.5, -1, -1.2, -1.5, -1.8, -2.5, -3, -3.3, Регулируемый 600 4 130
ADP7185 1 -5.5 … -2 0.5 -0.5, -1, -1.2, -1.5, -1.8, -2.5, -3, -3.3, Регулируемый 600 5 190

Полный перечень линейных стабилизаторов Analog Devices, поставляемых Промэлектроникой.

Новое поступление малошумящих LDO приведено в таблице:

Источник

Выбор стабилизатора напряжения

Выбор стабилизатора напряжения для дома

Выбор стабилизатора напряжения для дома

Я уже публиковал статью про то, как определить, какой стабилизатор лучше выбрать для дома. Там в основном уделялось внимание тому, какого типа стабилизатор лучше – релейный, электромеханический, симисторный. Есть у меня и другие статьи на тему стабилизаторов, рекомендую.

Ну а в этой статье я постараюсь ответить на главный вопрос –

Как правильно выбрать стабилизатор напряжения по мощности

Выбор мощности стабилизатора напряжения при покупке, одна из важнейших задач, выполнив правильно которую вы обеспечите себе и технике спокойную долгую жизнь.

Для начала, несколько общих рекомендаций перед выбором стабилизатора.

  • посмотрите какой вводной автомат у Вас на фазе. Это косвенно определяет уровень нагрузки разрешенной для Вашего объекта (дома). Нет смысла брать существенно выше номинал по мощности. Например у Вас 25 А автомат. То есть ограничение по мощность 25А*220В=5500 ВА то есть можно взять 5000 ВА или 8500 ВА стабилизатор, нет смысла брать больше. Кроме того, появляется вероятность выключения вводного автомата при включении мощного стабилизатора (высокие пусковые токи стабилизатора, в котором всегда присутствует трансформатор, “выбивают” автомат).
  • Посчитайте суммарную нагрузку всех приборов. Разделите ее на две части – с двигателями и без. Это необходимо сделать для того, чтобы учесть правильно пусковые и реактивные токи

Приблизительные мощности бытовых электроприборов приведены в Таблице 1:

Таблица 1. Номинальная потребляемая мощность бытовых приборов.

Бытовые приборы Электроинструмент
потребитель мощность, ВА потребитель мощность, ВА
фен для волос 450-2000 дрель 400-800
утюг 500-2000 перфоратор 600-1400
электроплита 1100-6000 электроточило 300-1100
тостер 600-1500 дисковая пила 750-1600
кофеварка 800-1500 электрорубанок 400-1000
обогреватель 1000-2400 электролобзик 250-700
гриль 1200-2000 шлифовальная машина 650-2200
пылесос 400-2000
радио 50-250 Электроприборы
телевизор 100-400 компрессор 750-2800
холодильник 150-600 водяной насос 500-900
духовка 1000-2000 циркулярная пила 1800-2100
СВЧ – печь 1500-2000 кондиционер 1000-3000
компьютер 400-750 электромоторы 550-3000
электрочайник 1000-2000 вентиляторы 750-1700
электролампы 20-250 сенокосилка 750-2500
бойлер 1200-1500 насос выс. давления 2000-2900

Как экономить электричество на некоторых домашних электроприборах, я рассказал здесь.

Вольт-Амперы и Ватты – в чем разница?

Для чего это нужно? Дело в том, что у приборов, имеющих в своем составе индуктивности (трансформаторы, электродвигатели) мощность, выраженная в Ваттах, меньше, чем мощность, выраженная в Вольт-Амперах в cosφ раз. cosφ (косинус фи, меньше либо равен 1) – это поправочный коэффициент, учитывающий реактивную составляющую, возникающую из-за индуктивных элементов. Обычно он указывается на корпусе прибора, но если его нет, то его можно принять 0,7 – 0,8.

Можно записать такое правило:

Вт=ВА * cosφ

В Вольт-Амперах измеряется полная мощность, которая состоит из активной и реактивной составляющих. Активная мощность измеряется в Ваттах (Вт), и всегда равна или меньше реактивной мощности (ВА).

Маркетологи, чтобы представить товар в выгодном свете, потребляемую мощность электроприборов указывают, как правило, в Вт (это меньше, чем в ВА), а мощность таких приборов, как генераторы и стабилизаторы, указывают в ВА, чтобы казалось больше.

Я тоже в этой статье мощность в основном привожу в ВА, чтобы “привязаться” к мощностям стабилизаторов.

Пусковые токи

Есть еще понятие пусковых токов, это когда в момент включения устройство требует такого количества энергии, которое в несколько раз превышает потребляемую энергию в штатном режиме.

В Таблице 2 приведены средние пусковые токи на электроприборы.

Таблица 2. Пусковые токи потребителей электроэнергии.

Потребитель

Кратность
пускового
тока

Длительность
импульса
пускового
тока, с

Про пусковые токи ламп накаливания можно почитать в статье про сопротивление нити лампы накаливания

При покупке стабилизатора нужно учитывать пусковые токи только у приборов последней строчки Таблицы 2, поскольку они имеют большую длительность. Короткими пусковыми токами можно пренебречь.

Нужно учесть, что пусковые токи не действуют одновременно, и для их учета можно взять самый мощный прибор. Хотя, бывают моменты, когда при включении питания к сети подключаются сразу все приборы. Это очень вредно не только для стабилизатора, но и для электропроводки вообще. Поэтому, подавая питание, включайте приборы по очереди, это можно делать групповыми автоматами.

Выбор стабилизатора по рабочему напряжению

Очень важно, прежде чем покупать это недешёвое устройство, проанализировать причину нестабильного напряжения, а потом уже переходить к выбору модели и мощности стабилизатора.

При выборе мощности также нужно учитывать то, что при пониженном входном напряжении выходная мощность стабилизатора уменьшается. При понижении входного напряжения до 170В мощность падает на 30-50% в зависимоти от вида и КПД стабилизатора.

Эта особенность стабилизаторов приводится на графике, который обычно есть в инструкции:

Падение мощности стабилизатора в связи с падением напряжения

Если напряжение в сети обычно занижено, то надо быть готовым, что при напряжении 150 В стабилизатор на 10 кВт будет уходить в ошибку по перегрузке при выходной мощности менее 7 кВт. Энергия не может браться ниоткуда, за всё надо платить. И мощность при пониженном напряжении может повыситься только за счет повышения тока.

Эта особенность стабилизаторов усугубляет проблемы и без того изношенных сетей. Ведь чем больше люди ставят стабилизаторы, тем больше потребляется ток, и тем больше проседает напряжение у соседей, которые ещё не купили стабилизатор. Замкнутый круг, в котором выигрывает тот, кто первый вложит деньги.

После 250 В мощность стабилизатора также ограничивается из-за перегрева, что видно на графике.

Поэтому, для правильного выбора стабилизатора замерьте напряжение в сети, поизучайте как сильно оно моргает, как сильно мигают лампочки. Это дает представление о просадках (обычно лампочка “на глаз” затухающая в два раза, получает не 220 Вольт, а 170-180 В.)

Исходя из замеренных реальных напряжений в доме, нужно определиться не только с мощностью стабилизатора, но и с диапазоном работы. Например, если напряжение постоянно занижено, нужно выбрать “повышающий” стабилизатор, а если завышено – широкодиапазонный.

Теперь перейдём к конкретным случаям выбора стабилизатора – для всего дома, для котла, для холодильника, и т.д.

Выбор стабилизатора напряжения для дома

Пример: Рассмотрим дом, два этажа, одна фаза. Вводной автомат – 50А. В доме свет, стиральная машина, холодильник, телевизор, компьютер. Итак, автомат ограничивает нагрузку 50*220=11000 ВА.

Не факт, что ввод и домашняя проводка выдержит ток 50А, но для оценки максимального тока можно выбрать этот способ.

Посмотрим, что дает наша нагрузка если ее включить одновременно.
Без двигателя: свет (50+50+50+50+50) + телевизор (300) + компьютер (700) = 1250 ВА.

С двигателем: стиральная машина 2000 Вт/0,7 = 2850 ВА
Итого суммарно: 1250 + 2850 = 4100 ВА.

Замеряем напряжение вечером, допустим 190 Вольт. При выборе стабилизатора для такого дома оптимальная мощность с запасом будет 5000 ВА. Если планируете добавить нагрузку и иметь запас, то лучше взять 8500 ВА.

Выбор стабилизатора напряжения для дома. Настенный стабилизатор, вид сзади

Выбор стабилизатора напряжения для дома. Настенный стабилизатор, вид сзади

Далее рассмотрим случаи, когда применение стабилизатора для всего дома нецелесообразно. Но для отдельных особо чувствительных потребителей стабилизатор всё же нужен. Это поможет решить проблему с напряжением и сэкономить средства.

Выбор стабилизатора напряжения для котла

Надежная и безаварийная работа газовых возможна только при соблюдении определенных условий, а именно при наличии качественного электропитания. К сожалению именно с этим непременным условием чаще всего возникают проблемы. Для решения этой проблемы необходимо установить стабилизатор напряжения для котла. Прежде всего рассмотрим причины, по которым мы хотим установить стабилизатор напряжения, а затем остановимся на таком вопросе, какой именно стабилизатор напряжения для котла нам необходим.

В чем же заключается опасность колебаний напряжения для отопительной техники?

  1. Несмотря на то, что контроллер (или проще говоря компьютер, управляющий котлом) имеет свой собственный стабилизатор напряжения, его нормальное функционирование гарантировано при напряжении питающей сети 220 плюс минус 10%В. Сбой в его работе может создать аварийную ситуацию.
  2. Арматура котла включает в себя электромагнитные клапаны и задвижки. Пониженное напряжение приводит к их неполному закрытию или открытию, а повышенное к выходу из строя. Эти обстоятельства так же требуют установить стабилизатор напряжения для котла.
  3. Изменение режима работы вентиляторов приводит к изменению состава топливной смеси и неустойчивому горению.
  4. При значительных отклонениях напряжения питающей сети вентиляторы и насосы имеют высокую степень вероятности выхода из строя.

Практически все производители отопительной техники рекомендуют установить стабилизатор напряжения котла и у многих это является одним из условий предоставления гарантии.

Кроме того, для питания котла я рекомендую применение Источника Бесперебойного Питания (UPS) типа Онлайн, чтобы при кратковременных отключениях электроэнергии котёл продолжал работать. Речь идёт о времени отключения 5-60 минут, в зависимости от емкости батареи ИБП. Кроме того, Онлайн ИБП с двойным преобразованием выдает чистую синусоиду и предохраняет электронику котла от возможных кратковременных (менее 10мс) скачков напряжения, с которыми ни один стабилизатор не успеет справится.

ИБП должен быть специальным, для котлов, со сквозным нулём – для правильной работы розжига.

Такие траты окупятся долгим сроком службы котла. Утешением может послужить то, что стабилизатор для котла должен иметь небольшую мощность – не более 500 ВА.

Выбор стабилизатора напряжения для компьютера

Компьютер состоит из системного блока и монитора. Поэтому мощность надо суммировать. Также если в стабилизатор включены еще и дополнительные приборы (сканер, принтер и т.д.) то всю мощность надо просуммировать и полученный результат сравнить с линейкой номиналов рассматриваемых стабилизаторов напряжения. Как правило, для домашнего компьютера можно выбрать стабилизатор мощностью не более 1000 Вт.

Для компьютера также рекомендую вместо стабилизатора применить Smart UPS (интерактивные ИБП). Они содержат в себе функцию стабилизации (релейного типа) и имеют аккумулятор. Таким образом, и напряжение будет относительно стабильным, и резерв обеспечен.

Стабилизатор напряжения для холодильника

В данном случае мы имеем отношение с более сложным прибором, который имеет и пусковые токи и реактивную составляющую (cosφ Выбор стабилизатора напряжения для стиральной машины

Если стиральная машина при пониженном напряжении плохо работает, когда все остальные домашние приборы чувствуют себя удовлетворительно, разумно поставить стабилизатор только для стиральной машины.

Выбор стабилизатора для стиральной машинки похож на выбор стабилизатора напряжения для холодильника, только не нужно умножать на 2, т.к. пусковые токи тут существенно меньше чем токи у компрессора холодильника.

Допустим, стиральная машина 2000 Вт. Тогда мы делим на 0,7, получаем 2857 ВА, то есть ближайший номинал – 3 кВА.

В итоге, выбор стабилизаторов напряжения – не такое уж и сложное дело.

Считаю, что стабильное напряжение – это, конечно, хорошо. Но если напряжения нет, то и стабилизировать нечего. Поэтому – советую обратить внимание на генераторы напряжения, для резервного бесперебойного питания своего дома.

Выкладываю инструкции к стабилизаторам напряжения.
• 1 Паспорт SUNTEK ЭМ электромеханический / Паспорт на электромеханические стабилизаторы Suntek СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000 автотрансформаторного типа., pdf, , скачан: 478 раз./

• 2 Паспорт на стабилизаторы напряжения SUNTEK ЭТ электронный тип_реле / Руководство по эксплуатации стабилизаторов напряжения электронного типа (на реле) СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000, pdf, , скачан: 1260 раз./

• 3 паспорт SUNTEK TT тиристорный тип / Руководство к стабилизаторам напряжения тиристорного типа SUNTEK TT (управление на тиристорных ключах), pdf, , скачан: 1125 раз./

Скачать инструкцию на стабилизаторы Энергия СНВТ .

На этом всё, читателей с вопросами и конструктивной критикой прошу в комментарии!

Источник



Пять понижающих регуляторов с низким током потребления

Analog Devices ADP5300

Низкий ток покоя, также называемый током потребления, может быть важным параметром для вашей конструкции источника питания

Собственный ток потребления (IQ) – этот ток, необходимый чипу для работы даже тогда, когда он не отдает мощность в нагрузку. Это минимальный ток питания, который будет использовать чип. Благодаря совершенствованию технологических процессов, токи покоя микросхем понижающих регуляторов с годами снижаются. Более жесткий контроль современного процесса производства микросхем также означает, что разброс значений IQ от чипа к чипу будет меньше, чем в прежние времена.

Пять понижающих регуляторов с низким током потребления

Именно IQ является причиной того, почему КПД любой микросхемы понижающего регулятора будет тем хуже, чем меньше энергии требуется вашей схеме. Поскольку IQ – это постоянный минимальный уровень мощности, необходимый для работы чипа, процент потерь КПД будет меньше, когда чип выдает полную мощность, чем когда он просто работает на холостом ходу, и питаемые им схемы берут минимальный ток.

Вот пять понижающих стабилизаторов с низким током покоя. Обратите внимание, что понижающим стабилизатором обычно называют микросхему, внутри которой имеются мощные переключающие транзисторы. Контроллер понижающего стабилизатора для коммутации больших токов использует внешние мощные транзисторы.

Микросхема Изготовитель Ток
потребления,
нА
Входное
напряжение,
В
Выходной
ток,
мА
BD70522GUL Rohm 180 2.5 … 5.5 500
ADP5300 Analog Devices 350 2.15 … 6 500
MP28300 MPS 500 2 … 5.5 300
MAX16956 Maxim Integrated 1100 3.5 … 36 300
TPS62800 Texas Instruments 2300 1.8 … 5.5 1000

Если вам нужен эффективный импульсный понижающий стабилизатор с низким током потребления, обязательно ознакомьтесь с этими компонентами перед началом следующего проекта.

Материалы по теме

  1. Datasheet Analog Devices ADP5300
  2. Datasheet Maxim Integrated MAX16956
  3. Datasheet MPS MP28300
  4. Datasheet Rohm BD70522GUL
  5. Datasheet Texas Instruments TPS62800

Перевод: AlexAAN по заказу РадиоЛоцман

Источник