Меню

Урок физики 10 класс электрический ток в различных средах

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 32. Электрический ток в металлах

Перечень вопросов, рассматриваемых на уроке:

1) прохождение тока в металлах;

2) зависимость сопротивления металлов от температуры;

3) явление сверхпроводимости.

Глоссарий по теме

Свободные электроны – это электроны, не связанные с определенными атомами.

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Температурный коэффициент сопротивления — величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009.- С.81-89.

М.М. Балашов О природе М., Просвещение, 1991г.

Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006

Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.

Основное содержание урока

Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

Какие заряженные частицы движутся в металлах при наличии тока?

После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.

Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.

После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.

1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.

2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.

3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.

Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.

Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:

Отсюда . По этой формуле можно найти среднюю скорость движения электронов.

Если в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.

На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.

Читайте также:  Признаки утечки тока в автомобиле

зависимость сопротивления металлов от температуры выражается формулой:

При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.

Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:

где ρ0 — удельное сопротивление при 0 градусов,

α — температурный коэффициент сопротивления.

Графиком зависимости ⍴(t) является прямая.

Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.

При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг — Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.

В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).

В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.

В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.

На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.

Разбор типовых тренировочных заданий

1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?

Зависимость сопротивления металлов от температуры определяется формулой

Из этой формулы выразим температурный коэффициент железа – α

После подстановки числовых данных получаем

2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса меди

Сила тока в проводнике равна:

Выразим скорость из этой формулы:

Концентрацию электронов найдем по формуле:

Число электронов найдём по формуле:

Площадь сечения равна:

Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:

Источник

Урок физики 10 класс электрический ток в различных средах

«Физика — 10 класс»

Наиболее просты количественные закономерности для электрического тока в металлах и электролитах.

Задачи на закон Ома, который выполняется для этих проводников, были приведены в главе 15. В данной главе преимущественно рассматриваются задачи на применение закона электролиза. Кроме того, при решении некоторых задач надо использовать формулу (16.1) для зависимости сопротивления металлических проводников от температуры.

Читайте также:  Источник тока физика 8 класс определение

Задача 1.

Проводящая сфера радиусом R = 5 см помещена в электролитическую ванну, наполненную раствором медного купороса. Насколько увеличится масса сферы, если отложение меди длится t — 30 мин, а электрический заряд, поступающий на каждый квадратный сантиметр поверхности сферы за 1 с, q = 0,01 Кл? Молярная масса меди М = 0,0635 кг/моль.

Площадь поверхности сферы S = 4πR 2 = 314 см 2 . Следовательно, заряд, перенесённый ионами за t = 30 мин = 1800 с, равен Δq = qSt = 0,01 Кл/(см 2 • с) • 314 см 2 • 1800 с = 5652 Кл. Масса выделившейся меди равна:

Задача 2.

При электролизе, длившемся в течение одного часа, сила тока была равна 5 А. Чему равна температура выделившегося атомарного водорода, если при давлении, равном 10 5 Па, его объём равен 1,5 л? Электрохимическии эквивалент водорода

По закону Фарадея масса m выделившегося водорода:

Из уравнения Менделеева—Клапейрона где R — универсальная газовая постоянная, М — молярная масса атомарного водорода, определим массу водорода, полученного при электролизе:

Из выражений (1) и (2) определим температуру:

Задача 3.

При никелировании изделия в течение 1 ч отложился слой никеля толщиной l = 0,01 мм. Определите плотность тока, если молярная масса никеля М = 0,0587 кг/моль, валентность n = 2, плотность никеля

Согласно закону электролиза Фарадея масса выделившегося на катоде никеля

где m = ρV = ρlS, а I = jS, где S — площадь покрытия никелем; F — постоянная Фарадея, Подставив выражения для массы никеля и силы тока I в формулу (1), получим откуда

Задача 4.

Определите электрическую энергию, затраченную на получение серебра массой 200 г, если КПД установки 80%, а электролиз проводят при напряжении 20 В. Электрохимический эквивалент серебра равен

Энергия, идущая только на электролиз, равна:

Согласно закону Фарадея m = kq, откуда

Подставив выражение для q в формулу (1), получим

Полная затраченная энергия Wэ связана с W’э выражением следовательно,

Задача 5.

Объясните, почему при дуговом разряде при увеличении силы тока напряжение уменьшается.

При увеличении силы тока возрастает термоэлектронная эмиссия с катода, носителей заряда становится больше, а следовательно, сопротивление промежутка между электродами уменьшается. При этом уменьшение сопротивления происходит быстрее, чем увеличение силы тока (в газах нарушается линейный закон Ома U = IR), поэтому напряжение уменьшается.

Задача 6.

Покажите, что при упругом столкновении электрона с молекулой электрон передаёт ей меньшую энергию, чем при абсолютно неупругом ударе.

При прямом абсолютно упругом столкновении электрона с молекулой выполняются законы сохранения энергии и импульса:

где me и m — массы электрона и молекулы; υ1 и υ2 — их скорости после столкновения. Решая эту систему относительно υ1 и υ2, получаем

Энергия, передаваемая молекуле, Так как me 2 ≈ m 2 . Тогда

Из полученного выражения следует, что молекуле передаётся очень маленькая часть первоначальной энергии электрона, так как me

Так как me По следам «английских ученых»

Источник

Опорный конспект по физике. Электрический ток в различных средах. (10 класс)

Опорный конспект к уроку физики в 10 классе.

Электрический ток в различных средах.

Электрический ток в металлах.

Электрический ток в металлах – это упорядоченное движение электронов.

hello_html_563551d.jpg

На катушку наматывают проволоку, концы которой припаивают к изолированным друг от друга дискам. К концам дисков при помощи скользящих контактов присоединяют гальванометр и приводят катушку в быстрое движение, а затем резко останавливают. После остановки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, в катушке возникает ток. Ток существует незначительное время, т.к. движению частиц препятствует сопротивление проводника.

Переносимый при этом заряд пропорционален отношению заряда частиц к их массе.

hello_html_m62d3cb5.jpg

Различные вещества имеют различное удельное сопротивление. С изменением температуры сопротивление проводника меняется.

Сопротивление увеличивается, температура увеличивается, Сила тока уменьшается.

Сопротивление проводника с учетом его температуры:

hello_html_21638b23.jpg

Подчиняется закону Ома для участка цепи.

Электрический ток в полупроводниках.

Полупроводник – это вещество, у которого удельное сопротивление с увеличением температуры резко уменьшается.

hello_html_b2aa3e7.jpg

hello_html_683d21f7.jpg

При температурах близких к нулю, удельное сопротивление очень велико. С повышением температуры удельное сопротивление уменьшается и ведет себя как диэлектрик

Читайте также:  Как выбрать драйвер тока

При нагревании кремния кинетическая энергия частиц повышается и наступает разрыв отдельных связей. Некоторые электроны освобождаются и образуются «дырки».

hello_html_m2f7c8f72.jpg

Примесная проводимость в полупроводниках.

Проводимость проводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Если примесь имеет валентность большую чем чистый проводник, то появляются свободные электроны.

Проводимость электронная, примесь в этом случае донорная, полупроводник является полупроводником n — типа.

Если примесь имеет валентность меньшую чем чистый полупроводник, то появляются разрывы связей – дырки.

Проводимость дырочная, примесь акцепторная, полупроводник является полупроводником р- типа.

hello_html_m1dd73407.jpg

В большинстве полупроводниковых приборов используются полупроводники р- и n — типов.

Свойство р и n – перехода используют для выпрямления переменного электрического тока в полупроводниковых диодах.

hello_html_m542bdba.jpg

Электрический ток в электролитах.

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролита на ионы.

hello_html_77148dbb.jpg

Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться в положительному электроду – аноду, а положительные ионы к отрицательному катоду.

Электрический ток в электролитах – это упорядоченное движение положительных и отрицательных ионов, которые образуются в результате электролитической диссоциации.

Электролиз – процесс выделения чистого вещества на электроде в результате окислительной реакции.

Масса выделившегося вещества определяется по закону Фарадея:

hello_html_m16167ae6.jpg

Электрический ток в вакууме.

Ток в вакууме не может существовать самостоятельно, т.к. вакуум является диэлектриком. В этом случае ток можно создать с помощью термоэлектронной эмиссии.

Термоэлектронная эмиссия – явление при котором, электроны выходят из металлов при нагревании. Такие электроны называют термоэлектронами.

hello_html_77330f13.jpg

Электрический ток в газах.

Электрический ток в газах – это упорядоченное движение положительных и отрицательных ионов и электронов, которые образуются в результате действия ионизатора.

Процесс протекания электрического тока через газ называют газовым разрядом.

Источник



Урок физики «Электрический ток в различных средах»

Описание разработки

При двухчасовой программе по физике встает вопрос о невозможности детально и подробно обобщить данную тему в 10 классе, поэтому возможен такой вариант урока — обобщения и систематизации материала как семинар. Используется групповая форма работы с классом. Предварительно учащиеся делятся на 5 группы. Им выдаются следующие темы:

1) Электрический ток в металлах§§109 — 112

2) Электрический ток в жидкостях§§119 — 120

3) Электрический ток в газах§§121 — 123

4) Электрический ток в вакуум姧117 — 118

5) Электрический ток в полупроводниках§§113 — 116

И план характеристики процесса

Механизм возникновения свободных носителей заряда

Основные законы и формулы

Вольт — амперная характеристика

Применение в технике и быту

Во время урока учащиеся по группам производят изложение материала и по ходу урока заполняется таблица, содержание которой впоследствии может быть применено для подготовки к зачету, контрольной работе , подготовке к ЕГЭ. Свой материал учащиеся могут подавать как в традиционной форме, так и в интерактивной.

На изложение каждой темы группе дается 8 минут. Резерв 5 минут.

Во время изложения материала учащиеся демонстрируют решение 2 — 3 задач из задачника Рымкевича (В приведенной таблице указаны все номера темы, часть из них была прорешена на предыдущих уроках, часть при выполнения домашних заданий — на усмотрение учителя)

Цель: – повторить и обобщить материал темы, подготовиться к контрольной работе.

Образовательные: выучить основные характеристики процессов

Воспитательные: способствовать привитию умственного труда, развитие коммуникативных качеств личности, создать условия повышения интереса к изучаемому предмету.

развитие речевых навыков учащихся, умений анализировать и систематизировать материал, умений делать выводы по изученному материалу.

Применяемые технологии: личностно ориентированные( групповые), информационные , здоровье сберегающие.

Оборудование: мультимедийный проектор, интерактивная доска, карточки, опорный конспект.

Ход урока:

1. Организационный момент.

— Здравствуйте ребята, садитесь. Целью нашего урока является обобщение и закрепление материала по теме «Электрический ток в разных средах», систематизация знаний, решение ключевых задач, подготовка к контрольной работе.

Источник