Меню

В чем измеряется магнитный момент тока

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Kvant. Магнитный момент тока

Кикоин А.К. Магнитный момент тока //Квант. — 1986. — № 3. — С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I, если он помещен в однородное магнитное поле с индукцией \(

\vec B\), действует сила \(

\vec F\), равная по модулю

F = BIl \sin \alpha\) ,

где α — угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник — это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее — на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b, по которой в указанном стрелками направлении течет ток I.

Рамка помещена в однородное магнитное поле с индукцией \(

\vec B\) так, что в начальный момент вектор \(

\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(

\frac<2>\) — плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab, или, поскольку произведение ab равно площади S рамки,

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу — в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS — это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м 2 .

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,— нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент — одно из самых важных понятий в физике.

Источник

В чем измеряется магнитный момент. Магнитный момент – фундаментальное свойство элементарных частиц

Магнитное поле характеризуется двумя векторными величинами. Индукция магнитного поля (магнитная индукция)

где – максимальная величина момента сил, действующего на замкнутый проводник площадью S , по которому течет ток I . Направление вектора совпадает с направлением правого буравчика относительно направления тока при свободной ориентации контура в магнитном поле.

Индукция определяется прежде всего токами проводимости, т.е. макроскопическими токами, текущими по проводникам. Кроме того, вклад в индукцию дают микроскопические токи, обусловленные движением электронов по орбитам вокруг ядер, а также и собственные (спиновые) магнитные моменты электронов. Токи и магнитные моменты ориентируются во внешнем магнитном поле. Поэтому индукция магнитного поля в веществе определяется как внешними макроскопическими токами, так и намагничиванием вещества.

Напряженность магнитного поля определяется только токами проводимости и токами смещения. Напряженность не зависит от намагничивания вещества и связана с индукцией соотношением:

где — относительная магнитная проницаемость вещества (безразмерная величина), — магнитная постоянная, равная 4 . Размерность напряженности магнитного поля равна .

Магнитный момент – векторная физическая величина, характеризующая магнитные свойства частицы или системы частиц, и определяющая взаимодействие частицы или системы частиц с внешними электромагнитными полями.

Роль, аналогичную точечному заряду в электричестве, играет замкнутый проводник с током, модуль магнитного момента которого в вакууме равен

где — сила тока, — площадь контура. Направление вектора определяется по правилу правого буравчика. В данном случае магнитный момент и магнитное поле создаются макроскопическим током (током проводимости), т.е. в результате упорядоченного движения заряженных частиц – электронов – внутри проводника. Размерность магнитного момента равна .

Читайте также:  Измерительный преобразователь переменного тока rs 485

Магнитный момент может создаваться также и микротоками. Атом или молекула представляет собой положительно заряженное ядро и находящиеся в непрерывном движении электроны. Для объяснения ряда магнитных свойств с достаточным приближением можно считать, что электроны движутся вокруг ядра по определенным круговым орбитам. Следовательно, движение каждого электрона можно рассматривать, как упорядоченное движение носителей заряда, т.е. как замкнутый электрический ток (так называемый микроток или молекулярный ток). Сила тока I в этом случае будет равна , где –заряд, переносимый через сечение, перпендикулярное траектории электрона за время , e – модуль заряда; — частота обращения электрона.

Магнитный момент , обусловленный движением электрона по орбите –микротоком – называется орбитальным магнитным моментом электрона. Он равен , где S – площадь контура;

где S – площадь орбиты, r – ее радиус. В результате движения электрона в атомах и молекулах по замкнутым траекториям вокруг ядра или ядер электрон обладает также и орбитальным моментом импульса

Здесь — линейная скорость электрона на орбите; — его угловая скорость. Направление вектора связано правилом правого буравчика с направлением вращения электрона, т.е. вектора и взаимно противоположны (рис.1). Отношение орбитального магнитного момента частицы к механическому называется гиромагнитным отношением . Разделив выражения (3) и (4) друг на друга, получим: отличен от нуля.

; элементарным источником магнетизма считают замкнутый ток). Магнитными свойствами обладают элементарные частицы , атомные ядра , электронные оболочки атомов и молекул . Магнитный момент элементарных частиц (электронов , протонов , нейтронов и других), как показала квантовая механика , обусловлен существованием у них собственного механического момента — спина .

Магнитный момент
m → = I S n → <\displaystyle <\vec >=IS<\vec >>
Размерность L 2 I
Единицы измерения
СИ ⋅ 2
Примечания
векторная величина

Магнитный момент измеряется в ⋅ 2 , или в Вб *м, или Дж /Тл (СИ), либо эрг /Гс (СГС), 1 эрг/Гс = 10 −3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора .

Формулы для вычисления магнитного момента

В случае плоского контура с электрическим током магнитный момент вычисляется как

где I <\displaystyle I>— сила тока в контуре, S <\displaystyle S>— площадь контура, n <\displaystyle \mathbf > — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика : если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

где r <\displaystyle \mathbf > — радиус-вектор , проведенный из начала координат до элемента длины контура d l <\displaystyle d\mathbf > .

В общем случае произвольного распределения токов в среде:

m = 1 2 ∫ V [ r , j ] d V <\displaystyle \mathbf =<1 \over 2>\int \limits _[\mathbf ,\mathbf ]dV> ,

Любых веществ. Источником формирования магнетизма, как утверждает классическая электромагнитная теория, являются микротоки, возникающие вследствие движения электрона по орбите. Магнитный момент — это непременное свойство всех без исключения ядер, атомных электронных оболочек и молекул.

Магнетизм, который присущ всем элементарным частицам, согласно обусловлен наличием у них механического момента, называемого спином (собственным механическим импульсом квантовой природы). Магнитные свойства атомного ядра складываются из спиновых импульсов составных частей ядра — протонов и нейтронов. Электронные оболочки (внутриатомные орбиты) тоже имеют магнитный момент, который составляет сумма магнитных моментов находящихся на ней электронов.

Иначе говоря, магнитные моменты элементарных частиц и обусловлены внутриатомным квантомеханическим эффектом, известным как спиновой импульс. Данный эффект аналогичен угловому моменту вращения вокруг собственной центральной оси. Спиновой импульс измеряется в постоянной Планка — основной константе квантовой теории.

Все нейтроны, электроны и протоны, из которых, собственно, и состоит атом, согласно Планку, обладают спином, равным ½ . В структуре атома электроны, вращаясь вокруг ядра, помимо спинового импульса, имеют еще и орбитальный угловой момент. Ядро, хоть и занимает статичное положение, тоже обладает угловым моментом, который создается эффектом ядерного спина.

Магнитное поле, которое генерирует атомный магнитный момент, определяется различными формами этого углового момента. Наиболее заметный вклад в создание вносит именно спиновой эффект. По принципу Паули, согласно которому два тождественных электрона не могут пребывать одновременно в одинаковом квантовом состоянии, связанные электроны сливаются, при этом их спиновые импульсы приобретают диаметрально противоположные проекции. В этом случае магнитный момент электрона сокращается, что уменьшает магнитные свойства всей структуры. В некоторых элементах, имеющих четное число электронов, этот момент уменьшается до нулевой отметки, и вещества перестают обладать магнитными свойствами. Таким образом, магнитный момент отдельных элементарных частиц оказывает непосредственное влияние на магнитные качества всей ядерно-атомной системы.

Ферромагнитные элементы с нечетным количеством электронов всегда будут обладать ненулевым магнетизмом за счет непарного электрона. В таких элементах соседние орбитали перекрываются, и все спиновые моменты непарных электронов принимают одинаковую ориентацию в пространстве, что приводит к достижению наименьшего энергетического состояния. Этот процесс называется обменным взаимодействием.

При таком выравнивании магнитных моментов ферромагнитных атомов возникает магнитное поле. А парамагнитные элементы, состоящие из атомов с дезориентированными магнитными моментами, не имеют собственного магнитного поля. Но если воздействовать на них внешним источником магнетизма, то магнитные моменты атомов выровняются, и эти элементы тоже приобретут магнитные свойства.

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М ) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с — скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l , где m — эквивалентный Магнитный заряд контура, а l — расстояние между «зарядами» противоположных знаков (+ и ).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — Спин а. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона m сп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μ в = (9,274096 ±0,000065)·10 -21 эрг/гс — Бора магнетон , h — Планка постоянная , е и m e — заряд и масса электрона, с — скорость света; S H — проекция спинового механического момента на направление поляH . Абсолютная величина спинового М. м.

где s = 1 / 2 — спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

Исследования атомных спектров показали, что m Н сп фактически равно не m в, а m в (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика , Радиационные поправки).

Орбитальный М. м. электрона m орб связан с механическим орбитальным моментом орб соотношением g opб = |m орб | / | орб | = |e |/2m e c , то есть Магнитомеханическое отношение g opб в два раза меньше, чем g cп. Квантовая механика допускает лишь дискретный ряд возможных проекций m орб на направление внешнего поля (так называемое Квантование пространственное): m Н орб = m l m в , где m l — магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2. ±l , где l — орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (g cп ¹ g opб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J . Поэтому часто рассматривают слагающую полного М. м. на направление вектора J , равную

где g J — магнитомеханическое отношение электронной оболочки, J — полное угловое квантовое число.

М. м. протона, спин которого равен

где M p — масса протона, которая в 1836,5 раз больше m e , m яд — ядерный магнетон, равный 1/1836,5m в. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона m p = 2,7927m яд, а нейтрона m n = -1,91315m яд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы , Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными m яд или m p и m n . Таким образом, М. м. ядра калия

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) — носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов — носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора m в оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 m в, 1,715 m в и 0,604 m в) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закон а или Кюри — Вейса закон а (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое «Магнитный момент» в других словарях:

Размерность L2I Единицы измерения СИ А⋅м2 … Википедия

Основная величина, характеризующая магн. свойства в ва. Источником магнетизма (М. м.), согласно классич. теории эл. магн. явлений, явл. макро и микро(атомные) электрич. токи. Элем. источником магнетизма считают замкнутый ток. Из опыта и классич.… … Физическая энциклопедия

Большой Энциклопедический словарь

МАГНИТНЫЙ МОМЕНТ, измерение силы постоянного магнита или токонесущей катушки. Это максимальная поворотная сила (поворотный момент), приложенная к магниту, катушке или электрическому заряду в МАГНИТНОМ ПОЛЕ, деленная на силу поля. Заряженные… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ МОМЕНТ — физ. величина, характеризующая магнитные свойства тел и частиц вещества (электронов, нуклонов, атомов и т.д.); чем больше магнитный момент, тем сильнее (см.) тела; магнитным моментом определяются магнитное (см.). Поскольку всякий электрический… … Большая политехническая энциклопедия

— (Magnetic moment) произведение из магнитной массы данного магнита на расстояние между его полюсами. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

магнитный момент — Хар ка магн. св в тела, усл. выраж. произвед. величины магн. заряда в каждом полюсе на расстояние м ду полюсами. Тематики металлургия в целом EN magnetic moment … Справочник технического переводчика

Векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. У микрочастиц различают орбитальные … Энциклопедический словарь

Источник

Магнитный момент

  • Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток).

Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина

Магнитный момент измеряется в А⋅м2 , или в Вб*М, или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10−3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость.

Пинч (англ. pinch — сужение, сжатие) — эффект сжатия токового канала под действием магнитного поля, индуцированного самим током. Сильный ток, протекающий в плазме, твёрдом или жидком металле создаёт магнитное поле. Оно действует на заряженные частицы (электроны и/или ионы), что может сильно изменить распределение тока. При больших токах сила Ампера приводит к деформации проводящего канала, вплоть до разрушения. В природе наблюдается в молниях .

Магнитосопротивление (магниторезистивный эффект) — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает.

γ4), радиационное затухание важно для ускорителей лёгких ультрарелятивистских частиц (электронные синхротроны), и несущественно для адронных машин.

Источник



Магнитный момент

Магнитный момент
m → = I S n → <\displaystyle <\vec >=IS<\vec >> <\vec m data-lazy-src=
СИ А⋅м 2
Примечания
векторная величина
Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток). Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина.

Примечание: Автор отождествляет «магни́тный моме́нт» и «магни́тный дипо́льный моме́нт». Это некорректно. Магни́тный дипо́льный моме́нт всегда является магни́тным моме́нтом, но магни́тный моме́нт не всегда является магни́тным дипо́льным моме́нтом. Например, Автор пишет, что «магнитный момент элементарных частиц (электронов, протонов, нейтронов и других) обусловлен существованием у них собственного механического момента — спина». Так вот, собственный механический момент (спин) не имеет абсолютно никакого отношения к магни́тному дипо́льному моме́нту. Кроме того, обусловленный спином магнитный момент элементарных частиц не является полноценным магнитным моментом, так как его направление в пространстве строго квантованно.

Эту статью нужно или доработать, или удалить, так как она сбивает читателей с толку и вводит в заблуждение.

Магнитный момент измеряется в А⋅м 2 , или в Вб*М, или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 −3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора.

Формулы для вычисления магнитного момента

В случае плоского контура с электрическим током магнитный момент вычисляется как

m = I S n <\displaystyle \mathbf =IS\mathbf > <\mathbf <m data-lazy-src=