Меню

В генераторе электрического тока электрическая энергия превращается в механическую

Принцип действия генератора электрического тока

Действие генератора электрического тока основано на явлении электромагнитной индукции.

Основным элементом генератора электрического тока является рамка, которую вращают в магнитном поле. При этом пронизывающий рамку магнитный поток изменяется во времени, вследствие чего в рамке возникает индукционный ток (рис. 16.2).

При равномерном вращении рамки в ней индуцируется переменный электрический ток: сила тока изменяется по синусоидальному закону (рис. 16.3).

Отрицательные значения силы тока соответствуют противоположному направлению тока.

Чтобы «снимать» с вращающейся рамки ток, не перекручивая при этом проводов, используют скользящие контакты, называемые щетками (рис. 16.2).

Напряжение в сети переменного тока можно повышать и понижать практически без потерь с помощью трансформаторов. Как мы увидим ниже, без этого была бы просто невозможна передача электроэнергии на большие расстояния.

Щетки обеспечивают, конечно, худший контакт, чем закрепленные проводники. Из-за большого сопротивления щетки греются и, кроме того, вследствие трения они стираются.

Поэтому в современных небольших генераторах электрического тока вращают не рамку, а постоянные магниты: при такой конструкции генератора скользящие контакты не нужны.

В промышленных генераторах на электростанциях вращают тоже не рамки, в которых индуцируется ток, а электромагниты. Ток к вращающимся электромагнитам приходится подводить с помощью скользящих контактов, но этот ток значительно меньше, чем индукционный ток в рамке.

Источник

Электрогенератор

Электрический генератор (от латинского — «производитель») — устройство, вырабатывающее электрическую энергию, то есть преобразующее механическую энергию в электрический ток.

Электрический генератор

Благодаря изобретению генератора уже в середине XIX в. у промышленности и населения появилась реальная возможность производства и использования электричества, например, для работы станков или освещения домов и улиц. Кстати, электрические двигатели постоянного тока по своей конструкции практически полностью аналогичны генераторам. Более того, если вращать якорь электромотора постоянного тока (например, от электрической машинки или другой игрушки), он, как и генератор, начнет вырабатывать ток.

Принцип работы первого генератора

В 1831 г. английский ученый Майкл Фарадей открыл электромагнитную индукцию. Сущность этого открытия заключалась в том, что если вращать проводник между полюсами магнита, то в нем возникнет электромагнитное поле. Такое поле возбуждает движение электронов, и по проводнику начинает течь электрический ток. Благодаря этому открытию стало возможным создание электрического генератора и электрического двигателя.

Электрическая цепь

Как работает электрогенератор?

Работа электрогенератора состоит во взаимодействии статора, ротора и контактных колец. Статор во включенном генераторе остается неподвижным. Расстояние между статором и ротором составляет всего лишь несколько миллиметров, поэтому между ними возникает очень сильное магнитное поле, и в обмотке ротора появляется электрический ток большой мощности. Обмотка статора при подаче напряжения от внешнего источника превращается в электромагнит.

Ротор соединен с валом механического устройства (двигатель внутреннего сгорания, ветряной или водяной двигатель и т. п.) и вращается во время работы генератора. Обмотка ротора в момент своего движения постоянно пересекает магнитное поле, создаваемое обмотками статора, и в ней образуется электрический ток.

Такая конструкция позволила избавиться от больших и тяжелых постоянных магнитов. Контактные кольца предназначены для съема электрической энергии с обмоток ротора. Они представляют собой барабан со множеством медных пластин, к которым подключены обмотки ротора. Снаружи с ними соприкасаются графитовые щетки, к которым с помощью проводов подключен потребитель электрической энергии.

Устройство генератора

Современный водяной двигатель

В современных водяных двигателях колесо с лопастями заменено более скоростной водяной турбиной (образовано от слова «турбо» — «вихрь»). Чаще всего она имеет спиральный кожух, по форме напоминающий раковину улитки. Вода поступает в широкий конец кожуха. Так как «коридор», по которому она течет, все время сужается, ее напор увеличивается.

Затем усиленный поток воды поступает на вогнутые лопатки турбины, которая расположена в центре «улитки», и вращает ее. Так энергия потока воды преобразуется в механическую работу.

Электричество из воды

В наши дни электричество производят на гидроэлектростанциях, которые используют энергию движущейся воды.

Схема работы гидроэлектростанции

Гидроэлектростанция состоит из двух основных частей: энергоблока и плотины (или дамбы), накапливающей воду. В энергоблоке расположены генераторы, вырабатывающие электрический ток. Их роторы вращаются благодаря водяным турбинам. Так энергия потока воды преобразуется в электрическую.

Гидроэлектростанции-гиганты

Одна из самых мощных в мире гидроэлектростанций была построена в Китае на реке Янцзы и получила название «Три ущелья». Ее бетонная плотина имеет длину 2309 м и высоту 185 м. Общая мощность электрогенераторов станции составляет почти 23 МВт (1 МВт = 1 млн Вт). За год они вырабатывают около 100 млрд кВт/ч электроэнергии.

Гидроэлектростанция

Лишь немногим меньше электроэнергии вырабатывает гидроэлектростанция «Итайпу», расположенная на реке Парана (на границе Бразилии и Парагвая), которая имеет самую большую плотину. Высота этого гигантского сооружения достигает 196 м, а длина — 7235 м.

Источник

§ 37. Генерирование электрической энергии

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света и т. д. Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии. Такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно необходима трансформация напряжения и тока при передаче электроэнергии на большие расстояния.

Электрический ток вырабатывается в генераторах — устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи 1 , солнечные батареи и т. п. Исследуются возможно сти создания принципиально новых типов генераторов. Например, разрабатываются так называемые топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую.

1 В термобатареях используется свойство двух контактов разнородных материалов создавать ЭДС за счет разности температур контактов.

Область применения каждого из перечисленных типов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика.

Читайте также:  Одинаковым ли будет направление индукционного тока если вводить в катушку

Основную роль в наше время выполняют электромеханические индукционные генераторы переменного тока . В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В дальнейшем, говоря о генераторах, мы будем иметь в виду именно индукционные электромеханические генераторы.

Генератор переменного тока. Принцип действия генератора переменного тока уже был рассмотрен в § 31.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток (см. § 31).

Модель генератора

Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе с обмоткой вращают вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.

В изображенной на рисунке 5.1 модели генератора вращают проволочную рамку, которая является ротором (но без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

Промышленный генератор

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки (рис. 5.2). Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Вопросы к параграфу

1. Какими преимуществами обладает переменный ток по сравнению с постоянным?

2. На каком принципе основана работа генераторов переменного тока?

Источник



Процесс преобразования энергии в электрических машинах

Процесс преобразования энергии в электрических машинахЭлектрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.

Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.

Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.

Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле . В обмотке якоря индуцируется э. д. с. и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Об осуществлении в электрической машине энергопреобразовательного процесса

Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:

1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;

2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,

3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.

Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.

Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в «машине постоянного тока» мы имеем двустадийное преобразование энергии.

Читайте также:  После зарядки нет тока у аккумулятора

Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой «изменяющееся электрическое сопротивление», преобразуется в энергию постоянного тока.

В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.

Роль упомянутого изменяющегося электрического сопротивления выполняет «скользящий электрический контакт», который в обычной «коллекторной машине постоянного тока» состоит из «электромашинной щетки» и «электромашинного коллектора», а в «униполярной электрической машине постоянного тока» из «электромашинной щетки» и «электромашинных контактных колец».

Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или «изменяющейся электрической индуктивности», или «изменяющейся электрической емкости», то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем «индуктивную машину», во втором — «емкостную машину».

Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование «электрическая машина», являющееся, по существу, более широким понятием.

Принцип действия электрического генератора.

Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.

Принципиальные схемы простейших генератора (а) и электродвигателя (б)

Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)

При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.

Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.

При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.

Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.

Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.

Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.

При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;

2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.

Электрический двигатель

Принцип действия электрического двигателя.

Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.

Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.

При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Читайте также:  Носители тока в электролитах закон фарадея для электролиза

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;

2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Электрический двигатель

Принцип обратимости электрических машин

Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.

Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.

Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.

Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.

Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U машина работает двигателем, при E > U — генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Принято использовать два основных классификационных признака: генераторы — предназначены для преобразования механической энергии в электрическую. Источники.
Ветроэнергетические установки

Ветроэнергетическая установка (ВЭУ) представляет собой комплекс взаимосвязанного оборудования и сооружений, предназначенный для преобразования энергии ветра в.
Схема электрических соединений ТЭЦ средней мощности

Схема электрических соединений ТЭЦ включает: синхронные генераторы — предназначены для выработки электроэнергии. Устанавливаются на одном валу с паровой или.
Что такое энергетика, теплоэнергетика, электроэнергетика и электрические системы

Энергетика (топливный энергетический комплекс) — область экономики, которая охватывает ресурсы, добычу, преобразование и использование различных видов энергии.
Электрические станции в картинках из диафильма

Источником электрической энергии на станциях являются машинные генераторы. В них происходит преобразование механической энергии в электрическую. Генераторы.
Как электроэнергия поступает с генераторов электростанций в энергосистему

Электрические генераторы электростанций вырабатывают электрическую энергию напряжением 6,3-36,75 кВ (в зависимости от типа генераторов). Передача.
Назначение и устройство синхронных машин

Синхронная машина — машина переменного тока, у которой скорость ротора при постоянной частоте тока в обмотках статора сохраняется постоянной и не зависит от.
Обратимость электрических машин

Согласно закону Био-Савара, на движущийся в магнитном поле проводник с током I действует сила F = Вli, (ВА) направление которой определяется по правилу левой.
Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток. Электрические машины постоянного тока следует различать по способу.
Структура электрических цепей

Электрические цепи — совокупность устройств и объектов, образующих путь электрическому току, электромагнитные процессы в которых можно описать с помощью.
Электрические газогенераторы

Электрические газогенераторы (газовые электростанции) — устройства, которые преобразуют энергию при сгорании топлива, т.е. газа, в электроэнергию. Данные.
Классификация электрических машин

Все электрические машины можно классифицировать по ряду признаков. По назначению: электромашинные генераторы, преобразующие механическую энергию в.

Источник