Меню

В каком направлении течет ток через диод при его прямом смещении

PN-переход в полупроводниках. Диод

Часть полупроводника n-типа или p-типа похожа на резистор, который не так полезен. Но когда производитель легирует монокристаллический кремний с помощью материала p-типа с одной стороны и n-типа с другой, возникает нечто новое — PN-переход.

PN-переходы — это элементарные строительные блоки полупроводниковых устройств, таких как диоды, транзисторы, солнечные элементы, светодиоды и интегральные схемы. Понимание этого позволяет понять работу всех этих устройств.

PN-переход

Поскольку мы знаем, что полупроводник p-типа имеет трехвалентные атомы, и каждый из них создает одну дырку, мы можем визуализировать это, как показано на рисунке ниже. Каждый обведенный кружком знак минус — это трехвалентный атом, а каждый знак плюс — это дыра в его валентной орбите.

полупроводник p-типа

Мы также знаем, что полупроводник n-типа имеет пятивалентные атомы, и каждый из них производит один свободный электрон, мы можем визуализировать это, как показано на следующем рисунке. Каждый обведенный кружком знак плюс — это пятивалентный атом, а каждый знак минус — это свободный электрон, который он вносит.

полупроводник n-типа

Производитель может изготовить один кристалл кремния с материалом p-типа на одной стороне и n-типом на другой стороне, как показано на рисунке. Граница между p-типом и n-типом называется PN-переходом.

PN-переход

Кристалл PN обычно известен как соединительный диод. Слово диод представляет собой сокращение двух электродов, где ди означает два.

Существует три возможных условия смещения для PN-соединения:

  1. Равновесие или нулевое смещение — внешнее напряжение не подается на PN-переход.
  2. Обратное смещение — положительная клемма источника подключена к n-типу, а отрицательная клемма источника подключена к p-типу.
  3. Прямое смещение — отрицательная клемма источника подключена к n-типу, а положительная клемма источника подключена к p-типу.

Давайте посмотрим на них один за другим.

Равновесие (нулевое смещение)

В PN-переходе без внешнего приложенного напряжения достигается условие равновесия. Посмотрим как.

Область истощения

Полупроводник n-типа имеет большее количество свободных электронов, чем полупроводник p-типа. Из-за этой высокой концентрации электронов на n-стороне они отталкиваются друг от друга.

Из-за отталкивания свободные электроны распространяются (рассеиваются) во всех направлениях. Некоторые из них пересекают границу между n и p. Когда свободный электрон входит в р-область, он притягивается к положительной дыре и рекомбинирует с ней. Когда это происходит, дыра исчезает, и свободный электрон становится валентным электроном.

Когда свободный электрон падает в дырку на p-стороне, атом p-стороны получает дополнительный электрон. Атом, который получает дополнительный электрон, имеет больше электронов, чем протонов, благодаря чему он становится отрицательным ионом.

Точно так же каждый свободный электрон, который покидает атом n-стороны, создает дыру в атоме n-стороны. Атом, который теряет электрон, имеет больше протонов, чем электронов, благодаря чему он становится положительным ионом.

ионы на каждой стороне соединения

Таким образом, каждый раз, когда электрон пересекает соединение и рекомбинирует с дыркой, он создает пару ионов. На следующем рисунке показаны эти ионы на каждой стороне соединения.

Каждая пара положительных и отрицательных ионов на стыке называется диполем. Создание диполя означает, что один свободный электрон с n-стороны и одна дырка с p-стороны выведены из оборота. По мере увеличения числа диполей область вблизи перехода истощается основными носителями заряда. Поэтому мы называем этот незаряженный регион областью истощения.

область истощения

Барьерный потенциал

Каждый диполь имеет электрическое поле между положительными и отрицательными ионами. Всякий раз, когда свободный электрон пытается войти в область истощения, это электрическое поле выталкивает его обратно в область n.

Напряженность электрического поля увеличивается с каждой электронно-дырочной рекомбинацией внутри области обеднения. Поэтому электрическое поле в конечном итоге останавливает диффузию электронов через соединение, и достигается равновесие.

Барьерный потенциал

Электрическое поле между ионами эквивалентно разности потенциалов, называемых барьерным потенциалом. При комнатной температуре барьерный потенциал составляет примерно 0,3 В для германиевых диодов и 0,7 В для кремниевых диодов.

Прямое смещение

При прямом смещении p-тип соединен с положительной клеммой источника, а n-тип соединен с отрицательной клеммой источника. На следующем рисунке показан диод прямого смещения.

Прямое смещение

Если батарея подключена таким образом, дырки в p-области и свободные электроны в n-области выталкиваются в направлении перехода. Если напряжение батареи меньше барьерного потенциала (0,7 В), у свободных электронов недостаточно энергии, чтобы пройти через область истощения. Когда они попадают в область истощения, ионы выталкивают их обратно в n-область. Из-за этого ток не течет через диод.

Когда напряжение батареи превышает барьерный потенциал (0,7 В), свободные электроны имеют достаточно энергии, чтобы пройти через область истощения и рекомбинировать с дырками. Таким образом они начинают нейтрализовать область истощения, уменьшая ее ширину.

Когда свободный электрон рекомбинируется с дыркой, он становится валентным электроном. Как валентный электрон, он продолжает двигаться влево, переходя от одной дырки к другой, пока не достигнет левого конца диода.

Когда он покидает левый конец диода, появляется новая дырка и процесс начинается снова. Поскольку одновременно движутся миллиарды электронов, мы получаем непрерывный ток через диод.

Обратное смещение

Подключение p-типа к отрицательной клемме батареи и n-типа к положительной клемме соответствует обратному смещению. На следующем рисунке показан диод с обратным смещением.

Обратное смещение

Отрицательная клемма батареи притягивает дырки, а положительная клемма батареи притягивает свободные электроны. Из-за этого дырки и свободные электроны вытекают из соединения, оставляя положительные и отрицательные ионы позади. Следовательно, область истощения становится шире.

Ширина области истощения пропорциональна обратному напряжению. По мере увеличения обратного напряжения область истощения становится шире. Область истощения перестает расти, когда ее разность потенциалов равна приложенному обратному напряжению. Когда это происходит, электроны и дыры перестают двигаться от соединения.

Обратный ток

Обратный ток в диоде состоит из тока неосновной несущей и тока утечки на поверхность. Этот обратный ток настолько мал, что вы даже не можете его заметить, и он считается почти нулевым.

Обратный ток насыщения

Как известно, тепловая энергия непрерывно создает пары свободных электронов и дырок. Предположим, что тепловая энергия создала свободный электрон и дырку внутри области истощения.

Область истощения выталкивает вновь созданный свободный электрон в область n, заставляя его покинуть правый конец диода. Когда он достигает правого конца диода, он входит во внешний провод и течет к положительной клемме батареи.

С другой стороны, вновь созданная дырка помещается в область p. Эта дополнительная дырка на стороне p позволяет одному электрону с отрицательной клеммы батареи войти в левый конец диода и упасть в дырку.

Обратный ток насыщения

Поскольку тепловая энергия непрерывно создает пары электрон-дырка внутри области истощения, во внешней цепи протекает небольшой непрерывный ток. Такой обратный ток, вызываемый термически создаваемыми неосновными носителями, называется током насыщения. Название насыщения означает, что увеличение обратного напряжения не приведет к увеличению количества термически производимых неосновных носителей.

Поверхностный ток утечки

В обратном смещенном диоде существует другой ток. Небольшой ток течет по поверхности кристалла, известной как ток поверхностной утечки.

Атомы на верхней и нижней поверхности кристалла не имеют соседей. У них всего шесть электронов на валентной орбите. Это означает, что у каждого поверхностного атома есть две дырки. Следующее изображение показывает эти дырки вдоль поверхности кристалла.

Поверхностный ток утечки

Из-за этого электроны проходят через поверхностные дырки от отрицательной клеммы батареи к положительной клемме батареи. Таким образом, небольшой обратный ток протекает вдоль поверхности.

Пробой

Существует предел того, сколько обратного напряжения выдержит диод перед пробоем. Если вы продолжите увеличивать обратное напряжение, диод в конечном итоге достигнет напряжения пробоя.

Читайте также:  Дома бьет током от всего в чем причина

Как только напряжение пробоя достигнуто, большое количество неосновных носителей генерируется в области истощения за счет эффекта лавины, и диод начинает сильно проводить в обратном направлении.

Лавинный эффект

Как мы знаем, в диоде с обратным смещением присутствует небольшой ток несущей. Когда обратное напряжение увеличивается, оно заставляет неосновных носителей двигаться быстрее.

Эти неосновные носители, движущиеся с высокой скоростью, сталкиваются с атомами кристалла и выбивают валентные электроны, производя больше свободных электронов. Эти новые миноритарные носители присоединяются к существующим миноритарным носителям и сталкиваются с другими атомами, которые выбивают больше электронов.

Один свободный электрон смещает один валентный электрон, в результате чего образуются два свободных электрона. Эти два свободных электрона затем выбивают еще два электрона, в результате чего образуются четыре свободных электрона. Таким образом, число электронов увеличивается в геометрической прогрессии : 1, 2, 4, 8…

Это постоянное столкновение с атомами генерирует большое количество неосновных носителей, которые производят значительное количество обратного тока в диоде. И этот процесс продолжается до тех пор, пока обратный ток не станет достаточно большим, чтобы разрушить диод.

Диод — обозначение

На следующем рисунке показан схематический символ диода. Символ выглядит как стрелка, которая указывает со стороны p в сторону n. Сторона p называется анодом, а сторона n — катодом.

символ диода

Диод I-V характеристики

На следующем рисунке показана базовая диодная схема, в которой диод смещен в прямом направлении. Резистор R S обычно используется, чтобы ограничить прямой ток I F.

схема

После подключения этой схемы, если вы измерите напряжение и ток диода для прямого и обратного смещения и построите график, то вы получите график, который выглядит следующим образом:

Диод I-V характеристики

Этот график называется вольт-амперная характеристика (IV). Это самая важная характеристика диода, потому что она определяет, сколько тока протекает через диод для данного напряжения.

Резистор является линейным устройством, потому что его кривая IV является прямой линией. Однако, диод отличается. Это нелинейное устройство, поскольку его кривая IV не является прямой линией. Это связано с барьерным потенциалом.

В зависимости от приложенного к нему напряжения диод будет работать в одной из трех областей: прямое смещение, обратное смещение и пробой.

Область прямого смещения

Когда напряжение диода меньше барьерного потенциала, через диод течет небольшой ток. Когда напряжение на диоде превышает барьерный потенциал, ток, протекающий через диод, быстро увеличивается.

Область прямого смещения

Напряжение, при котором ток начинает быстро увеличиваться, называется прямым напряжением (VF) диода. Это также называется напряжением включения или напряжением колена. Как правило, кремниевый диод имеет VF около 0,7 В, а диод на основе германия имеет около 0,3 В.

Область обратного смещения

Область обратного смещения существует между нулевым током и пробоем.

В этой области небольшой обратный ток протекает через диод. Этот обратный ток вызван термически произведенными неосновными носителями. Этот обратный ток настолько мал, что вы даже не можете его заметить, и он считается почти нулевым.

Область обратного смещения

Область пробоя

Если вы продолжите увеличивать обратное напряжение, вы в конечном итоге достигнете так называемого пробивного напряжения диода.

В этот момент в обедненном полупроводниковом слое происходит процесс, называемый лавинным пробоем, и диод начинает сильно проводить в обратном направлении, разрушаясь.

Область пробоя

Из графика видно, что у пробоя очень острое колено с последующим почти вертикальным увеличением тока.

Источник

Диоды на основе р-n перехода (часть 2)

Смещение диода.

Напряжение, приложенное к диоду, называется напряжением смещения. На рисунке показан диод на основе р-п перехода, соединенный с источником тока. Резистор добавлен для ограничения тока до безопасного значения.

В изображенной цепи отрицательный вывод источника тока соединен с материалом п-типа. Это заставляет электроны двигаться от вывода по направлению к р-n переходу. Свободные электроны, накопившиеся на р-стороне перехода притягиваются к положительному выводу. Это уменьшает количество отрицательных зарядов на р-стороне, потенциальный барьер уменьшается, что дает возможность для протекания тока. Ток может течь только тогда, когда приложенное напряжение превышает потенциальный барьер.

Источник тока создает постоянный поток электронов, который дрейфует через материал п-типа вместе с содержащимися в нем свободными электронами. Дырки в материале р-типа также дрейфуют по направлению к переходу. Электроны и дырки собираются на переходе и взаимно уничтожаются. Однако в то время как электроны и дырки взаимно компенсируются, на выводах источника тока появляются новые электроны и дырки. Большинство носителей продолжает двигаться по направлению к р-п переходу, пока приложено внешнее напряжение.

Диод на основе р-n перехода при прямом смещении

Поток электронов через р-часть диода притягивается к положительному выводу источника тока. Как только электроны покидают материал р-типа, создаются дырки, которые дрейфуют по направлению к р-n переходу, где они взаимно компенсируются с другими электронами. Когда ток течет от материала п-типа к материалу р-типа, то говорят, что диод смещен в прямом направлении.

Ток, текущий через диод, смещенный в прямом направлении, ограничен сопротивлением материалов р- и п-типа и внешним сопротивлением цепи. Сопротивление диода невелико. Следовательно, подсоединение источника тока к диоду в прямом направлении создает большой ток. При этом может выделиться такое количество тепла, которого достаточно для разрушения диода. Для того, чтобы ограничить ток, последовательно с диодом необходимо включить резистор.

Диод проводит ток в прямом направлении только тогда, когда величина внешнего напряжения больше потенциального барьера. Германиевый диод требует минимальное прямое смещение 0,3 вольта; кремниевый диод — минимальное прямое смещение 0,7 вольта.

Когда диод начинает проводить ток, на нем появляется падение напряжения. Это падение напряжения равно потенциальному барьеру и называется прямым падением напряжения (Ер). Падение напряжения равно 0,3 вольта для германиевого диода и 0,7 вольта для кремниевого диода. Величина прямого тока (IF) является функцией приложенного напряжения (Е), прямого падения напряжения (Ef) и внешнего сопротивления (R). Это соотношение можно получить с помощью закона Ома:

падение напряжения равно потенциальному барьеру

В диоде, на который подано напряжение смещения в прямом направлении, отрицательный вывод внешнего источника тока соединен с материалом п-типа, а положительный вывод с материалом р-типа. Если эти выводы поменять местами, диод не будет проводить ток и про него говорят, что он смещен в обратном направлении. В этой конфигурации свободные электроны в материале п-типа притягиваются к положительному выводу внешнего источника тока, что увеличивает количество положительных ионов в области р-n перехода, а, следовательно, увеличивает ширину обедненного слоя со стороны материала п-типа р-n перехода. Электроны также покидают отрицательный вывод источника тока и поступают в материал р-типа. Эти электроны заполняют дырки вблизи р-n перехода и служат причиной перемещения дырок по направлению к отрицательному выводу, что увеличивает ширину обедненного слоя со стороны материала р-типа р-n перехода. В результате обедненный слой становится шире, чем в несмещенном или смещенном в прямом направлении диоде.

Диод на основе р-n перехода при обратном смещении

Приложенное в обратном направлении напряжение смещения увеличивает потенциальный барьер. Если напряжение внешнего источника равно величине потенциального барьера, электроны и дырки не могут поддерживать протекание тока. При обратном напряжении смещения течет очень маленький ток, этот ток утечки называется обратным током (Iн) и существует благодаря наличию неосновных носителей. При комнатной температуре неосновных носителей очень мало. При повышении температуры создается больше электронно-дырочных пар. Это увеличивает количество основных носителей и ток утечки.

Все диоды с р-n переходом обладают малым током утечки. В германиевых диодах он измеряется в микроамперах; в кремниевых диодах — в наноамперах. Германий имеет больший ток утечки, так как он более чувствителен к температуре. Этот недостаток германия компенсируется его невысоким потенциальным барьером.

Читайте также:  Проводник для предохранителя по току

Суммируя вышесказанное, можно сказать, что диод на основе р-n перехода является устройством, пропускающим ток только в одном направлении. Когда смещен в прямом направлении — ток течет. Когда смещен в обратном направлении — течет только маленький ток утечки. Это свойство позволяет использовать диод в качестве выпрямителя. Выпрямитель преобразует переменное напряжение в постоянное.

Схематическое обозначение диода показано на рисунке. Р-часть представлена стрелкой, а п-часть — чертой. Прямой ток течет от части n- кчасти р- (против стрелки). Часть n- называется катодом, а часть р- — анодом.

Схематическое обозначение диода

Катод поставляет, а анод собирает электроны.

Цепь с диодом, смещенным в прямом направлении.

показано включение диода, смещенного в прямом направлении. Отрицательный вывод источника тока подсоединен к катоду. Положительный вывод подсоединен к аноду. Это позволяет току течь в прямом направлении. Резистор (Rg) включен последовательно с диодом для ограничения прямого тока до безопасного значения.

Цепь с диодом, смещенным в обратном направлении

показано включение диода, смещенного в обратном направлении. Отрицательный вывод источника тока подсоединен к аноду. Положительный вывод подсоединен к катоду. Через диод, смещенный в обратном направлении течет малый обратный ток (IR).

Источник

Устройство полупроводникового диода, p-n переход.

Возвращаемся к рубрике “Основы электроники” и в этой статье мы разберем очень важное, основополагающее понятие, а именно p-n переход! И, конечно, же разберем работу устройства, сердцем которого является уже упомянутый p-n переход, то есть полупроводникового диода 🙂

И, первым делом, мы подробно рассмотрим устройство p-n перехода и химические процессы, протекающие в нем, которые, собственно, и определяют то как он работает. Основными понятиями, которыми мы будем сегодня оперировать являются “электроны” и “дырки”. И если с электроном все понятно, то на физическом смысле дырок стоит остановиться поподробнее.

Полупроводниковые материалы, которые являются основой p-n перехода, характеризуются тем, что они объединяют в себе как свойства проводников, так и свойства диэлектриков. В кристаллической структуре проводников есть много свободных носителей заряда, которые под воздействием электрического поля начинают перемещаться, что и обуславливает способность проводника проводить ток.

В диэлектриках связь частиц с атомами очень сильная, поэтому свободные носители заряда отсутствуют (все частицы жестко закреплены на своем месте в кристаллической решетке). Поэтому диэлектрики не пропускают электрический ток.

В полупроводниках же не все так однозначно. В целом, для того, чтобы электрон покинул свое место, то есть высвободился от атома ему необходим определенный уровень внутренней энергии. Эта энергия может появиться, например, в результате повышения температуры. И величина этой внутренней энергии для полупроводников намного меньше, чем для диэлектриков. В этом и есть ключевой момент!

При низкой температуре большинство электронов полупроводника “сидят” на своих местах, и поэтому проводимость тока очень низкая. А, соответственно, с ростом температуры способность полупроводника проводить ток улучшается.

С этим процессом разобрались: итак, с ростом температуры в полупроводнике число свободных электронов увеличивается.

Во время разрыва связи электрона с ядром атома в электронной оболочке атома появляется свободное место. Атом при этом получает положительный заряд, ведь изначально заряд был нейтральным, а электрон, имеющий отрицательный заряд, атом покинул 🙂

Но свободное место не долго остается пустым, так как на него переходит электрон из соседнего атома. И этот процесс повторяется снова и снова. Таким образом, происходит перемещение положительного заряда. И вот именно этот условный(!) положительный заряд и называют дыркой.

Электроны и дырки.

Такой механизм проводимости называется собственной проводимостью полупроводника. Но на практике, в частности в транзисторах и диодах, применяются полупроводники с примесями, поскольку примесная проводимость значительно превышает собственную.

Примеси разделяют на:

  • донорные, то есть отдающие
  • акцепторные, принимающие

Разберем классический пример – кремний и мышьяк 🙂 У кремния на внешней оболочке атома 4 электрона (валентные электроны). У мышьяка таких электронов 5. Атом мышьяка отдает 4 из своих электронов на образование связей с 4-мя электронами атома кремния. При этом один из 5-ти валентных электронов не участвует в образовании связей.

У мышьяка энергия отрыва этого 5-го электрона от атома достаточно невелика. Настолько, что уже при небольшой температуре атомы мышьяка теряют свои незанятые в связях с кремнием электроны. Но при этом, поскольку в соседних атомах нет свободных мест, то дырок не возникает, и “дырочная” проводимость практически отсутствует. Так мы получили полупроводник с электронной проводимостью, то есть полупроводник n-типа.

Если же мы возьмем в качестве примеси 3-х валентный элемент (3 электрона на внешней оболочке атома), то в случае с добавлением примеси к кремнию (4 электрона), одно место останется свободным. На это место “придет” электрон соседнего атома и так далее, то есть возникнет процесс перемещения дырки. Так мы получим полупроводник p-типа.

Вот мы разобрались и с этим 🙂 Двигаемся непосредственно к рассмотрению p-n перехода!

Итак, p-n переход (электронно-дырочный переход) – это область, в которой соприкасаются два полупроводника, имеющие разный тип проводимости (p-тип и n-тип):

Полупроводники p-типа и n-типа.

Причем обе области электрически нейтральны. Только одна из них содержит свободно перемещающиеся дырки, а вторая – электроны.

При соприкосновении полупроводников разного типа возникает диффузионный ток. Это связано с тем, что свободные носители (электроны и дырки) стремятся перейти из той области, где их много в ту область, где их мало. При прохождении через переход частицы рекомбинируют друг с другом. В результате этого вблизи границы перехода образуются избыточные заряды:

p-n переход.

На рисунке изображены только свободные носители заряда в каждой из областей.

Давайте чуть подробнее разберем этот процесс… Один из электронов переходит из области n-типа и “занимает” свободное место, то есть дырку в области p-типа. На первоначальном месте этого электрона в области n-типа появляется дырка (ведь электрона там больше нет). И в итоге получается, что в p-области вблизи перехода скапливаются электроны, а в n-области наоборот дырки. Не забываем, что дырка – это не реально существующая частица, а условный(!) положительный заряд.

Но этот процесс не продолжается бесконечно по одной простой причине. Из-за того, что на границе формируются два новых слоя, возникает дополнительное электрическое поле, которое они порождают. Под действием этого поля возникает так называемый дрейфовый ток, направленный противоположно диффузионному току. И при определенной концентрации частиц около границы перехода между этими токами возникает равновесие и процесс останавливается:

Дрейфовый ток p-n перехода.

Строго говоря, p-n переход – это именно область, в которой практически отсутствуют свободные носители заряда (обедненная область). Для того, чтобы выйти из этого положения равновесия, мы можем приложить к переходу внешнее напряжения. Различают прямое и обратное смещение.

При прямом смещении положительный потенциал подается на область p-типа, а отрицательный, соответственно, на область n-типа:

Прямое смещение.

В этом случае внешнее электрическое поле (от источника напряжения) направлено противоположно тому полю, которое существует внутри перехода. В результате диффузионный ток начинает преобладать над дрейфовым, поскольку такое внешнее поле приводит к движению дырок из p-области в n-область и электронов в обратном направлении.

Вот так и возникает прямой ток, направление которого противоположно движению электронов.

Обратное же смещение выглядит так:

Обратное смещение p-n перехода.

Такое подключение приводит лишь к увеличению областей, в которых отсутствуют свободные носители заряда. Действительно, под действием электрического поля при обратном смещении свободные электроны и дырки будут удаляться от границы слоев.

Читайте также:  Трансформатор тока т 0 66 сертификат соответствия

В результате диффузионный ток будет максимально уменьшен и преобладать будет ток дрейфовый. В таком случае протекающий ток называют обратным (его величина очень мала по сравнению с прямым током).

Полупроводниковое устройство, внутри которого сформирован один такой p-n переход, и называют диодом. А его выводы (электроды) получили названия анод и катод. На принципиальных электрических схемах полупроводниковый диод обозначается следующим образом:

Полупроводниковый диод.

Ключевой характеристикой диода является вольт-амперная характеристика (ВАХ). Она представляет из себя зависимость протекающего через диод тока от приложенного к нему напряжения:

Вольт-амперная характеристика диода.

Как видите, здесь все в точности соответствует тому, что мы обсудили при разборе p-n перехода. Правая ветвь графика относится к прямому смещению перехода. При увеличении напряжения увеличивается и протекающий прямой ток. Обратите внимание, что при прямом включении напряжение должно достигнуть определенного значения для того, чтобы диод стал хорошо пропускать ток. Если напряжение меньше этого значения (пусть и создает прямое смещение), то способность диода пропускать ток будет низкой.

При обратном смещении (левая ветвь характеристики) ток достигает некоторого значения и перестает увеличиваться. Это процесс протекания незначительного обратного тока. Если продолжать увеличивать напряжение, то произойдет пробой p-n перехода (про ситуацию пробоя мы еще обязательно поговорим в статье, посвященной стабилитронам 🙂 ).

Таким образом, можно сказать, что диод пропускает ток в одном направлении и препятствует протеканию тока в обратном направлении.

И на этом, пожалуй, на сегодня закончим, рассмотрели мы основные процессы, протекающие в p-n переходе и полупроводниковом диоде. Совсем скоро, буквально в одной из следующих статей, разберем основные примеры использования диодов. Будем рады видеть вас на нашем сайте снова!

Источник



В каком направлении течет ток через диод при его прямом смещении

Направление электрического потока. Диод

«Приятной особенностью большого количества стандартов является то, что есть из чего выбрать»

Эндрю Таненбаум, профессор информатики

Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал «отрицательными» (имеющими недостаток заряда), фактически имеют избыток электронов.

К тому времени, когда было открыто истинное направление движения потока электронов, обозначения «положительный» и «отрицательный» уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к «избыточному» заряду, правильно было бы назвать электрон «положительно» заряженным . По большому счету, термины «положительный» и «отрицательный» являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда «черным», а его недостаток — «белым», в этом случае ученые говорили бы, что электрон имеет «белый» заряд (при условии использования гипотезы Франклина).

Поскольку мы склонны связывать слово «положительный» с «избытком» а слово «отрицательный» с «недостатком», то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где «положительный» означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока:

stat37

Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов:

stat38

Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и — (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и — выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае.

Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен . почти.

Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными. И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными.

Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока. Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов.

Лучшим примером полярного устройства может послужить диод, который является односторонним «клапаном» для электрического тока. Принцип его действия аналогичен обратному клапану, используемому в водопроводе и гидравлических системах. В идеале, диод обеспечивает беспрепятственный поток для тока в одном направлении (практически не оказывая ему сопротивления), и препятствует этому потоку в обратном направлении (оказывая ему бесконечное сопротивление). Условное обозначение (символ) диода выглядит следующим образом:

stat39

Если мы поместим диод в схему с батареей и лампочкой, то выполняемая им работа будет следующей:

stat40

Когда диод стоит в правильном направлении, разрешающем поток, лампочка горит. В противном случае диод блокирует поток электронов аналогично обрыву цепи, и лампочка гореть не будет.

Если мы используем общепринятое обозначение потока в цепи, то стрелка символа диода указывает на направление потока зарядов от положительного контакта к отрицательному:

stat41

И наоборот, при использовании обозначения потока электронов, стрелка символа диода направлена против этого потока:

stat42

Исходя из вышеизложенного и во избежание путаницы с условными обозначениями электронных компонентов, большинство людей выбирает общепринятое обозначение потока при анализе электрических схем.

Источник