Меню

Вакантное место катушка ток гальванометр электрон

Обобщение и систематизация знаний по теме Электрический ток в различных средах

Выбранный для просмотра документ задача дополнительно.docx

Сколько электронов проходит через поперечное сечение проводника за 1 нс при силе тока 32 мкА?

hello_html_m85b6deb.png

Выбранный для просмотра документ план урока.docx

План учебного занятия класс 10 дата 26.05.2017

Тема учебного занятия: Обобщение и систематизация знаний по теме «Электрический ток в различных средах»

Практическая цель: предполагается, что к окончанию учебного занятия учащиеся будут уметь устанавливать логические связи между структурными элементами знаний по данной теме, приведут в систему знания и практические умения по их применению.

Образовательная задача: обеспечить условия для проверки теоретических знаний по теме «Электрический ток в различных средах», ликвидировать недочеты и закрепить знания по данной теме путем сравнительного анализа основных структурных элементов.

Развивающая задача: создать условия для творческой активности и самостоятельности учеников; обеспечить ситуации, способствующие умению выделять главное, делать выводы, , анализировать учебный материал при составлении обобщающих таблиц, содействовать развитию физически грамотной речи, логического мышления.

Воспитательная задача: способствовать воспитанию самостоятельности, умению работать в группе, формированию навыкам адекватной самооценки и оценки работы товарищей .

Комплексно-методическое обеспечение : мультимедийный проектор, компьютер, экран, раздаточный материал.

Группы : пять групп из пяти — шести участников, по желанию.

Задание для групп : самостоятельно изучить по дополнительной литературе ток в заданной среде, подготовить выступление, сопровождающееся демонстрацией и (или) компьютерной презентацией.

Ход учебного занятия:

Создание благоприятного психологического

формулирование цели урока

Повторение основных терминов по теме «Электрический ток в различных средах»

3. Обобщение и систематизация полученных знаний

Релаксация на 20-25 мин

Работа в группах Обсуждение особенностей процесса протекания тока в разных средах; формулировка законов, описывающих протекание тока в средах;

практическое применение электрического тока в разных средах.

Источник

Презентация к уроку «Электрический ток в различных средах»

Нажмите, чтобы узнать подробности

Открытый урок по физике в 10 классе на тему «Электрический ток в средах»

Цель урока: повторить и обобщить знания о природе электрического тока в различных средах. Сформировать умения и навыки применения знаний на практике.

Задачи урока:

Образовательная— вооружать учащихся глубокими знаниями, формировать самостоятельность в достижении и обобщении знаний;

Воспитательная- воспитание сознательной дисциплины, воспитание коллективизма, самостоятельности, инициативы;

Развивающая- развитие общего кругозора учащихся, выделять главное, делать обобщения, выводы, сравнения, умение слушать.

Эпиграф к уроку: «Природа так обо всём позаботилась, что повсюду ты находишь, чему учиться».

Леонардо да Винчи.

Форма урока:

Оборудование к уроку: ноутбук, мультипроектор, экран, раздаточный материал для выполнения заданий, оборудование для опыта по электролизу.

Конспект урока:

  1. Оргмомент. Подготовка класса к уроку. Сообщение темы и целей урока.
  2. Работа по презентации. Фронтальный опрос.
  1. Как можно разделить вещества по электрической проводимости(слайд 5)

Проводники, диэлектрики и полупроводники

  1. Какие вещества относятся к проводникам ( слайд 5)

Хорошо проводят электрический ток

К ним относятся металлы, электролиты, плазма …

Наиболее используемые проводники – Au, Ag, Cu, Al, Fe …

  1. Какие вещества отнесём к диэлектрикам.(слайд5)

Практически не проводят электрический ток. К ним относятся

пластмассы, резина, стекло, фарфор, сухое дерево, бумага …

  1. Какие вещества относятся к полупроводникам (слайд 5)

Занимают по проводимости промежуточное положение между проводниками и диэлектриками

Итак, давайте вспомним с вами, что является свободными носителями электрических зарядов в различных средах.

Работа с таблицей (слайд 6,7,8)

Электрический ток в металлах

Электрический ток в металлах это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участие в переносе электрического заряда.

Опыты Папалекси и Мандельштама (слайд 11)

Опыт Толмена и Стюарта (слайд12)

Зависимость сопротивления проводника от температуры (слайд 13) –формула

  • Что называют сверхпроводимостью? (слайд 14, 15, 16)
  • Сопротивление проводника зависит от температуры. При нагревании металлов, сопротивление увеличивается, при охлаждении сопротивление уменьшается. При стремлении температуры проводника к нулю, может появиться явление, которое называется сверхпроводимость.

Выводы: (слайд 17)

  1. Носителями заряда в металлах являются электроны.
  2. Процесс образования носителей заряда — обобществление валентных электронов.
  3. Выполняется закон Ома.
  4. Применение — обмотка двигателей трансформаторов, генераторов, проводка внутри зданий, сети электропередач, силовые кабели.

Задача

Сопротивление медного провода при 0 ? С равно 4 Ом.

Найдите его сопротивление при 50 ? С,

если температурный коэффициент

сопротивления меди α=4,3× 10?? К?’

R= 4 Ом ×(1+4,3× 10?? К?’ × 50 ? С)=4,86 Ом

Электрический ток в полупроводниках.(слайд 18)

Слайд 19- Определение полупроводников

Полупроводники — это вещества, в которых электрический ток образуется движением электронов, а величина удельного сопротивления находится в пределах между проводниками и диэлектриками. Полупроводниками являются химические элементы IV, У и VI групп периодической системы Д. И. Менделеева — графит, кремний, германий, селен и другие, а также многие окислы и другие соединения различных металлов. Количество подвижных носителей зарядов в полупроводниках в обычных условиях невелико, однако оно возрастает в сотни и тысячи раз при некоторых внешних воздействиях (нагревание, действие света и т. д.), а также при наличии в П. определенных примесей.

Слайд 20 – Собственная проводимость полупроводников

Слайд 21-22- изменения в полупроводниках при увеличении температуры

Слайд 23- акцепторные примеси

Слайд 24- применение полупроводников

Задание — «Домино»-работа в парах.

Электрический ток в жидкостях (слайд 25)

1.Как возникают свободные заряды? (слайд 27)

2. Электролитическая диссоциация — распад молекул на ионы под действием растворителя.(слайд 28)

3. Электролиты — жидкий проводник, в котором подвижными носителями зарядов являются только ионы.

4. Как проходит ток через электролит? (слайд29-30)

Под действием сил электрического поля, положительно заряженные ионы движутся к катоду, а отрицательные ионы к аноду.

На аноде отрицательные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны.

5. Электролиз (слайд 31)

Прохождение электрического тока через раствор электролита, сопровождающееся химическими превращениями вещества и выделением его на электродах

6. от чего зависит масса вещества, выделившегося на электродах за определённое время? (слайд 33-34)

Масса вещества, выделившегося на электроде за время Δt при прохождении электрического тока, прямо пропорциональна силе тока и времени

K – электрохимический эквивалент вещества (зависит от молярной массы вещества «М» и валентности «n»)

Физ. смысл k – численно равен массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

7. Применение электролиза в технике (слайды 35-45)

  1. Гальваностегия— декоративное или антикоррозийное покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, омеднение, золочение).
  2. Гальванопластика —электролитическое изготовление металлических копий, рельефных предметов. Этим способом были сделаны фигуры для Исаакиевского собора в Санкт-Петербурге.
  3. Электрометаллургия-получение чистых металлов при электролизе расплавленных руд (Al,Na,Mg,Be).
  4. Рафинирование металлов— очистка металлов от примесей.

9. работа с задачником Рымкевича стр. 167

Найти электрохимический эквивалент меди, серебра, никеля.

Электрохимические эквиваленты, мг/Кл(10 -6 кг/Кл)

Источник

Вакантное место катушка ток гальванометр электрон

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 13. В большую катушку, замкнутую на гальванометр, вставлена малая катушка, соединённая с источником тока. Зависимость силы тока I в малой катушке от времени t показана на графике. В какой(-ие) промежуток(-ки) времени в большой катушке возникает индукционный ток?

3) только 1-2 и 2-3

Ответ задания: 3.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • Вариант 1
  • Вариант 1. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 2
  • Вариант 2. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 3
  • Вариант 3. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 4
  • Вариант 4. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 5
  • Вариант 5. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 6
  • Вариант 6. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 7
  • Вариант 7. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 8
  • Вариант 8. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 9
  • Вариант 9. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 10
  • Вариант 10. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 11
  • Вариант 11. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 12
  • Вариант 12. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 13
  • Вариант 13. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 14
  • Вариант 14. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 15
  • Вариант 15. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 16
  • Вариант 16. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 17
  • Вариант 17. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 18
  • Вариант 18. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 19
  • Вариант 19. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 20
  • Вариант 20. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 21
  • Вариант 21. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 22
  • Вариант 22. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 23
  • Вариант 23. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 24
  • Вариант 24. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 25
  • Вариант 25. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 26
  • Вариант 26. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 27
  • Вариант 27. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 28
  • Вариант 28. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 29
  • Вариант 29. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 30
  • Вариант 30. Задания ОГЭ 2019. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
Читайте также:  Вина кометы брызнул ток объяснение

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Обобщающий урок по теме: «Электрический ток в различных средах»

Общающий урок по теме: «Электрический ток в различных средах»

Образовательные: повторить, обобщить и систематизировать знания учащихся по теме «Электрический ток в различных средах», проконтролировать усвоение учащимися основных законов по теме «Электрический ток в различных средах» и умение их применять.

Развивающие: Развивать мышление, умение делать логические выводы, выделять главное; развивать познавательные интересы; формировать умение планировать работу и ориентироваться в информационном пространстве; совершенствовать умение сравнивать, анализировать учебный материал при составлении обобщающих таблиц; формировать навыки проводить исследования и умение выступать перед аудиторией, защищая свою работу; совершенствовать навыки самостоятельной учебной работы;

Воспитательные: Формировать навыки взаимообучения, воспитывать самостоятельность; формировать навыки адекватной самооценки и оценки работы товарищей; устанавливать связь с жизненным опытом; формировать коммуникативные навыки учащихся, умение работать в команде, сотрудничать; воспитывать у учащихся уважение к чужому и собственному труду, умение выслушать товарища, адекватно воспринимать критику.

Регламент: 2 урока

Группы: пять групп из пяти — шести участников, по желанию.

Задание для групп: самостоятельно изучить по дополнительной литературе ток в заданной среде, подготовить выступление, сопровождающееся демонстрацией и (или) компьютерной презентацией.

Комплексно-методическое обеспечение: мультимедийный проектор, компьютер, экран

Пояснительная записка.

Структура урока.

Этапы урока

Содержание работы

Время (минуты)

Методы и приемы

Повторение основных терминов по теме «Электрический ток в различных средах»

3. Обобщение и систематизация полученных знаний

Обсуждение особенностей процесса протекания тока в разных средах; формулировка законов, описывающих протекание тока в средах;

практическое применение электрического тока в разных средах.

Игры «Брейн-ринг», «Ой, кто это?»

1. Вводный. На доске группы слов.

Найдите лишнее:

Фарадей, электролит, положительные и отрицательные ионы, вакуум, электрохимический эквивалент. (Эл. ток в жидкостях )

Газ, дырки, электроны, p-n переход, запирающий слой. (Эл ток в п/п)

Анод, катод, электроемкость, термоэлектронная эмиссия, нить накала (Эл. ток вакууме)

Ионизация, рекомбинация, самостоятельный разряд, раствор соли (Эл ток в газах)

Вакантное место, катушка, ток, гальванометр, электрон (Эл ток в металлах)

Учитель: Что объединяет оставшиеся на доске слова? Ответ: Среда протекания электрического тока. Сегодня 5 групп будут рассказывать нам о токе в некой среде, то, что не прочитаешь в учебнике. Но прежде, чем приступить к этому – небольшая разминка. Играем в «Шляпу»!

2. Повторение

Учитель заранее печатает множество слов-терминов по теме «Электрический ток в средах», эти слова складываются в шляпу. В игре принимают участие пары игроков (по 1 паре из каждой команды). Шляпу берет один из игроков. Он наугад достает листок, сложенный пополам (чтобы нельзя было заранее прочитать написанное на нем), и пытается объяснить за 20 секунд своему партнеру как можно больше слов. Нельзя употреблять однокоренные слова, объяснять слово по буквам или использовать прямой перевод на другой язык. Если слово незнакомо, его все равно надо объяснять – положить его назад в шляпу и заменить другим нельзя. Так проходит 2 круга, партнеры объясняют слова поочередно. Затем отгаданные слова подсчитываются, сколько партнеры слов сумели объяснить друг другу – столько и очков.

Слова для шляпы:

3. Обобщение и систематизация полученных знаний

На экране демонстрируются 5 видеороликов, иллюстрирующих прохождение тока в разных средах. Каждая группа ребят должна выбрать ролик, соответствующий теме их исследования. 5-10 минут на подготовку, а затем ребята отвечают на вопрос: «Какое физическое явление наблюдается? Объяснить данное явление с точки зрения физики»

Читайте также:  Если период синусоидального тока t составляет 0 001 с то частота f составит

Отчитываются группы по следующему плану (можно использовать подготовленную заранее презентацию).

1. Носители тока и способ их образования.

2. Поведение носителей при отсутствии и при наличии электрического поля.

3. Зависимость силы тока от напряжения в данной среде (вольт-амперная характеристика).

4. Зависимость проводимости от температуры и других условий.

5. Особенности протекания тока в данной среде.

6. Применение тока в данной среде в быту, науке и технике.

На защиту каждой группе даётся 5–7 мин. После защиты выступающие отвечают на вопросы активных слушателей

Видеоролики:

4. Контролирующий. Игра «Брейн – ринг»

В игре принимают участие одновременно все 5 команд. На размышление дается 1 минута. Для определения права первого ответа обычно используется электронная система: если ответ готов, команда нажимает на кнопку. У нас, правда, в лицее ее нет, поэтому играли на хлопках: кто первый хлопнет, тот и отвечает. В случае неверного ответа команде соперника даётся 20 секунд.

Вопрос 1. В 1876 году на улицах Парижа появились новые источники света. Помещенные в белые матовые шары, они давали яркий приятный свет. Почему новый свет называли «русским светом», «русским солнцем»?

Ответ: Создателем этих необычайных «свечей» был русский изобретатель Яблочков Павел Николаевич. В короткое время чудесная «свеча» русского изобретателя завоевала всеобщее признание. «Свечами Яблочкова» освещались лучшие гостиницы, улицы и парки крупнейших городов Европы. «Свеча Яблочкова» представляет собой дуговую лампу, но без регуляторов.

Вопрос 2. Птицы часто сидят на проводах. Почему их не убивает током?

Ответ: Сидят они на одном проводе, а второй проходит от него на некотором расстоянии. Тело сидящей на проводе птицы представляет собой как бы ответвление цепи, сопротивление которого по сравнению с другой ветвью (короткого участка между ногами птицы) огромно. Поэтому сила тока в этой ветви (в теле птицы) ничтожна и безвредна

Вопрос 3. Гигантский электрический скат создаёт в воде напряжение 50-60 В. Нильский сом — 350 В, а угорь-электрофорус — более 500 В. На тело самой рыбы это напряжение не оказывает никакого действия. Мышечная ткань электрических органов — проводник, а соединительная — изолятор. Почему нильскому сому и угорю-электрофорусу нужно создавать более высокое напряжение, чем гигантскому скату?

Ответ: Из-за худшей проводимости пресной воды по сравнению с солёной, пресноводным рыбам необходимо создавать более высокое напряжение, чем морским. Оказавшись в пресной воде, обитатель морей — ромбовидный скат не сможет использовать своё электрическое «оружие».

Вопрос 4. Почему электрические лампы накаливания чаще всего перегорают в момент включения?

Ответ: В момент включения сила тока во много раз больше номинальной, так как сопротивление холодной нити накала мало.

Вопрос 5. Если баллон неоновой лампы потереть о шерсть, то лампа может зажечься. КАК объяснить это явление?

Ответ: В результате трения стекло электризуется, т.е. возникают заряды. Электрическое поле зарядов вызывает кратковременное свечение лампы.

Вопрос 6. Почему газосветные трубки тлеющего разряда необходимо беречь от попадания в них воздуха?

Ответ: Тлеющий разряд возникает при низком давлении. При попадании воздуха давление резко растет, длина свободного пробега электронов сокращается и их кинетическая энергия оказывается недостаточной для ионизации электронным ударом.

Игра «Ой, кто это?»

Правила игры: те же, что и в Брейне. Только вопрос задается о конкретном физике.

1. О нем великий Максвелл сказал: «Исследования. в которых он ус­тановил законы механического взаимодействия электрических токов, при­надлежат к числу самых блестящих работ, которые проведены когда-либо в науке. Теория и опыт как будто в полной силе и законченности вылились сразу из головы этого «Ньютона электричества». На его надгробном па­мятнике высечены слова: «Он был так же добр и так же прост, как и велик». (Андре-Мари Ампер)

2. Он открыл один из важнейших количественный закон цепи электрического тока. Опыты и теоретические доказательства были описаны им в главном труде «Гальваническая цепь, разработанная математически», вышедшем в 1827 г. Он нашел ряд из многих веществ по возрастанию сопротивления. Он установил постоянство силы тока в различных участках цепи, показал, что сила тока убывает с увеличением длины провода и с уменьшением площади его поперечного сечения. (Ом.)

3. В 1823-1826 гг. он принимал участие в кругосветной экспедиции должности физика, где ярко проявился его изобретательский талант. Будучи академиком, он направляет свои исследования в область электричества. Энергетический подход к электрическим явлениям был методом его исследований. (Эмиль Христианович Ленц.)

4. По профессии пивовар, он был прекрасным экспериментатором, исследовал законы выделения теплоты электрическим током, внес большой вклад в кинетическую теорию газов. (Джоуль.)

5. Он был рыцарем Почетного легиона, получил звание сенатора и грфа. Наполеон не упускал случая посетить заседания Французской академии наук, где он выступал. Он изобрел электрическую батарею, пышно названную «короной сосудов». (Вольта.)

6. Он славился своей рассеянностью. Про него рассказывали, что однажды он с сосредоточенным видом варил в воде свои часы 3 минуты, держа яйцо в руке. Он стал академиком в 39 лет, причем в избрании не играли ни малейшей роли его работы по магнетизму и электричеству. Их, по существу не было. Он был избран по секции геометрии за исследования в области математики и химии. (Ампер.)

7. Он открыл один из важнейших законов электричества в 1785 году, используя для этого крутильные весы. Прием, использованный им, лишний раз доказывает, что изобретательность человеческого ума не знает границ (Шарль Кулон.)

Заполнение таблицы: сравнить вольт-амперные характеристики, выделить достоинства и недостатки, например, полупроводниковых и вакуумных приборов и т.д.таблицы: сравнить вольт-амперные характеристики, выделить достоинства и недостатки, например, полупроводниковых и вакуумных приборов и т.д.

Источник



Электромагнитная индукция. Опыты Фарадея. Электромагнитные колебания и волны

1. Явление электромагнитной индукции было открыто английским ученым Майклом Фарадеем. Если соединить катушку с гальванометром и внести в катушку полосовой магнит северным полюсом, то стрелка гальванометра отклонится, что свидетельствует о существовании в катушке электрического тока. Когда магнит остановится в катушке, то ток прекратится (рис. 95). При выдвижении магнита из катушки в ней вновь появится электрический ток, но он будет иметь противоположное направление. Причиной возникновения электрического тока в катушке, является изменение магнитного поля, пронизывающего эту катушку, которое происходит при движении магнита.

Возможны различные способы изменения магнитного поля, пронизывающего контур проводника. Можно, например, перемещать не магнит, а катушку, т.е. надевать её на магнит. При этом также возникнет индукционный ток. Можно в большую катушку вставить малую катушку. Большую катушку соединить с гальванометром, а малую — с источником постоянного тока. При замыкании и размыкании цепи малой катушки можно наблюдать отклонение стрелки гальванометра. Таким образом, при любом изменении магнитного поля пронизывающего замкнутый проводник, в нём возникает индукционный ток.

Эти и другие опыты показывают, что ток появляется только при изменении магнитного поля, пронизывающего замкнутый проводник.

Явление возникновения тока в замкнутом проводнике при изменении магнитного поля, пронизывающего контур проводника, называется электромагнитной индукцией. Ток, возникающий в этом случае в цепи, называют индукционным током.

Таким образом, направление индукционного тока в катушке зависит от направления движения магнита.

2. Направление индукционного тока зависит от того, каким полюсом вносят магнит в катушку или выносят из нее, т.е. от направления магнитного поля. Если вносить магнит в катушку не северным полюсом, как это делалось в опыте, описанном выше, а южным полюсом, то стрелка гальванометра отклонится в сторону, противоположную той, в которую она отклонялась при внесении магнита северным полюсом. Направление индукционного тока будет разным в зависимости от того, вносят магнит в катушку или выносят его из катушки. Таким образом, направление индукционного тока зависит от направления движения магнита относительно катушки.

Вносить магнит в катушку можно быстрее и медленнее. Наблюдения позволяют сделать вывод о том, что сила индукционного тока зависит от скорости движения магнита, т.е. от скорости изменения магнитного поля. Сила индукционного тока тем больше, чем больше скорость изменения магнитного поля, пронизывающего контур проводника.

Если в самом проводнике изменяется сила тока, то вокруг проводника существует переменное магнитное поле. Это поле порождает в проводнике индукционный ток, который называется током самоиндукции, а явление возникновения такого тока — явлением самоиндукции.

Значение открытия явления магнитной индукции заключается в том, что в этом явлении наглядно наблюдается связь электрических и магнитных явлений, электрического и магнитного полей, что позволяет говорить о существовании единого электромагнитного поля.

3. Явление электромагнитной индукции лежит в основе работы генератора электрического тока — устройства, которое служит источником электрического тока и в котором происходит преобразование механической энергии в электрическую. Основными частями генератора являются магнит и расположенная между его полюсами насаженная на вал рамка.

Читайте также:  Твт 110 технические характеристики трансформаторы тока

Рамка приводится во вращение, пронизывающее её магнитное поле изменяется, и в катушке возникает индукционный ток. Этот ток снимается с рамки с помощью устройства, называемого коллектором, представляющим собой два полукольца, каждое из которых присоединяется к различным концам рамки, и щёток, касающихся колец. Промышленные генераторы имеют более сложное устройство, но все они состоят из вращающейся части (ротора), обычно в промышленном генераторе это электромагнит, создающий вращающееся магнитное поле, и неподвижной части (статора) — обмотки, в которой индуцируется электрический ток.

4. Максвеллом было теоретически показано, а Герцем экспериментально доказано, что изменяющееся магнитное поле порождает переменное электрическое поле, в свою очередь переменное электрическое поле порождает переменное магнитное поле, т.е. в пространстве происходят изменения (колебания) характеристик электромагнитного поля.

Электромагнитные колебания происходят в колебательной системе, называемой колебательным контуром. Колебательный контур — это электрическая цепь, состоящая из конденсатора и катушки индуктивности (рис. 96).

Если зарядить конденсатор и затем замкнуть его на катушку, то по цепи пойдёт электрический ток. При этом конденсатор начнёт разряжаться. Сначала сила тока в цепи будет увеличиваться, и появится ток самоиндукции, препятствующий увеличению основного тока и направленный против него. Через ½ часть периода конденсатор полностью разрядится, а сила тока в катушке станет максимальной. Затем сила тока начнет уменьшаться. Ток самоиндукции, который при этом возникнет, будет стремиться поддержать основной ток и будет направлен так же, как и он. Через ¼ часть периода ток прекратится, и конденсатор перезарядится. Затем пойдет обратный процесс.

Таким образом, в колебательном контуре происходят электромагнитные колебания, т.е. периодические изменения заряда, силы тока, электрического и магнитного полей. Колебания, происходящие в колебательном контуре, благодаря начальному запасу энергии в конденсаторе называются свободными. В процессе колебаний энергия извне в контур не поступает.

Минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется, называется периодом ​ \( (T) \) ​ электромагнитных колебаний. За период колебаний заряд на обкладках конденсатора изменяется от максимального значения до следующего максимального значения того же знака, или сила тока изменяется от максимального значения до следующего максимального значения при том же направлении тока.

Характеризуя электромагнитные колебания, часто говорят об их частоте. Частотой ​ \( (\nu) \) ​ колебаний называют число полных колебаний в одну секунду. Частота обратна периоду колебаний

Единицей частоты является 1 Гц. Частоту электромагнитных колебаний часто измеряют в килогерцах (1 кГц = 1000 Гц) и в мегагерцах (1 МГц = 1 000 000 Гц).

5. Подобно тому как механические колебания распространяются в пространстве в виде механических волн, электромагнитные колебания распространяются в пространстве в виде электромагнитных волн. Многочисленные эксперименты показывают, что электрическое и магнитное поля взаимосвязаны. Если в какой-либо точке пространства возникает переменное электрическое поле, то в соседних точках оно возбуждает переменное магнитное поле, которое, в свою очередь, возбуждает переменное электрическое поле и т.д. Таким образом, можно говорить об электромагнитном поле. Это поле и распространяется в пространстве.

Процесс распространения периодически изменяющегося электромагнитного ноля представляет собой электромагнитные волны.

Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. Они характеризуются определённой длиной волны ​ \( \lambda \) ​. Длина волны — это расстояние, на которое перемещается электромагнитная волна за время, равное периоду колебаний ​ \( (T) \) ​. ​ \( \lambda=cT \) ​ или \( \lambda=c/\nu \) , где ​ \( c \) ​ — скорость распространения электромагнитной волны, ​ \( \nu \) ​ — частота колебаний.

6. Электрически заряженные частицы могут колебаться с различной частотой. Соответственно, излучаемые при этом электромагнитные волны имеют разную длину волны. Поэтому диапазон частот электромагнитных волн очень широк: он лежит в пределах от 0 до 10 22 Гц, а длина волны — в пределах от 10 -14 м до бесконечности. По длине волны или по частоте электромагнитные волны можно разделить на восемь диапазонов. Обладая рядом общих свойств (интерференция, дифракция), волны разной частоты имеют и специфические свойства.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита.
Б. От того, каким полюсом вносят магнит в катушку.

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А
2) только в катушке Б
3) в обеих катушках
4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

1) возникает только в эбонитовом кольце
2) возникает только в медном кольце
3) возникает в обоих кольцах
4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток.
Б. Малую катушку вынимают из большой.

1) только в опыте А
2) только в опыте Б
3) в обоих опытах
4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с
2) 1 с-2 с и 3 с-4 с
3) 0-1 с и 2 с-3 с
4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени
2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с
3) индукционный ток не возникнет ни в какой промежуток времени
4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды.
Б. Радиоволны.
B. Световые волны.

Укажите правильный ответ.

1) только А
2) только Б
3) только В
4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

1) только А
2) только Б
3) А и В
4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) опыты Фарадея
Б) опыт Эрстеда
B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ
1) действие проводника с током на магнитную стрелку
2) электромагнитная индукция
3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА
A) генератор электрического тока
Б) электрический двигатель
B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) взаимодействие постоянных магнитов
2) взаимодействие проводников с током
3) возникновение электрического тока в проводнике при его движении в магнитном поле
4) магнитное действие проводника с током
5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц
2) 106,2 МГц
3) 847,5 кГц
4) 847,5 МГц

Источник