Меню

Выражение для теплового тока

Тепловое действие тока, плотность тока и их влияние на нагрев проводников

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.

Закон Джоуля-Ленца

Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.

Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.

Электрическая плитка

Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. — в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.

Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.

Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.

Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.

К примеру для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, — не более 15 ампер на кв.мм.

Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.

Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.

Нагретые током электрические проводники

С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.

Чем больше площадь поверхности проводника по отношению к его объему, — тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.

Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.

Электродвигатель на экране тепловизора

Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.

Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.

Читайте также:  Вещи из тока бока в реальной жизни

Электрическое соединение жил кабеля с помощью клеммника

Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.

В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.

Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.

К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.

Источник

Что такое тепловой ток в физике? — 2021

rytp барбоскины без мата VIDEOMEGA RU

тепловой ток скорость, с которой тепло передается с течением времени. Поскольку это тепловая энергия, измеряемая во времени, единица измерения теплового тока в системе СИ составляет джоулей в секунду или Вт (Вт).

Тепло течет через материальные объекты через проводимость, причем нагретые частицы передают свою энергию соседним частицам. Ученые изучили поток тепла через материалы задолго до того, как узнали, что материалы состоят из атомов, и тепловой ток является одной из концепций, которая была полезна в этом отношении. Даже сегодня, хотя мы понимаем, что перенос тепла связан с движением отдельных атомов, в большинстве ситуаций нецелесообразно и бесполезно пытаться думать о ситуации таким образом, и отступить, чтобы рассмотреть объект в более широком масштабе, является Наиболее подходящий способ изучения или прогнозирования движения тепла.

Математика теплового потока

Поскольку тепловой ток представляет собой поток тепловой энергии с течением времени, вы можете думать о нем как о небольшом количестве тепловой энергии, DQ ( Q переменная, обычно используемая для представления тепловой энергии), передаваемая в течение небольшого промежутка времени, дт , Использование переменной ЧАС для представления теплового тока это дает уравнение:

Если вы взяли предварительное исчисление или исчисление, вы можете понять, что скорость изменения, подобная этой, является ярким примером того, когда вы хотели бы взять предел, когда время приближается к нулю. Экспериментально, вы можете сделать это путем измерения изменения температуры с меньшими и меньшими временными интервалами.

Эксперименты, проведенные для определения теплового тока, выявили следующие математические зависимости:

ЧАС = DQ / дт = кА ( TЧАС — TС ) / L

Это может показаться пугающим массивом переменных, поэтому давайте разберем их (некоторые из которых уже были объяснены):

  • ЧАС : тепловой ток
  • DQ : небольшое количество тепла, передаваемого в течение времени дт
  • дт : небольшое количество времени, в течение которого DQ был переведен
  • К : теплопроводность материала
  • : площадь поперечного сечения объекта
  • TЧАС — TС : разница температур между самой теплой и самой холодной температурой в материале
  • L : длина, по которой передается тепло

Есть один элемент уравнения, который следует рассматривать независимо:

Это разница температур на единицу длины, известная как градиент температуры .

Термостойкость

В технике они часто используют понятие термического сопротивления, р , чтобы описать, насколько хорошо теплоизолятор предотвращает передачу тепла через материал. Для плиты из материала толщиной L отношение для данного материала р = L / К , в результате чего возникают следующие отношения:

Источник

Большая Энциклопедия Нефти и Газа

Тепловой ток

Тепловой ток iT, определяющийся образованием дырок и электронов при тепловом движении, остается неизменным для данной температуры. Поэтому счростом приложенного напряжения увеличивается ток / if-ij стремясь по величине к тепловому току ( рис. 18 — 4), который относительно мал. [2]

Тепловой ток , при прочих равных условиях, обратно пропорционален ширине запрещенной зоны полупроводникового материала. [3]

Тепловой ток в схеме с ОЭ имеет также другое значение, нежели в схеме ОБ. Это объясняется влиянием эмиттерного перехода на рост теплового тока в схеме с ОЭ. [5]

Тепловые токи 1 э0 и Гк0 в справочниках на параметры транзисторов не приводятся, но даются сведения о токе / К. [6]

Тепловой ток для этих решений очень мал. Возмущение, связанное с заменой / 0 на /, спадает с уменьшением температуры. [7]

Тепловой ток образуется неосновными носителями, которые генерируются в прилегающих к пространственному заряду объемах полупроводника, с толщиной порядка диффузионной длины L, приходят в область действия пространственного заряда и, подхватываясь его полем, переносятся беспрепятственно в соседнюю область. [8]

Читайте также:  При гармонических колебаниях напряжение в цепи переменного тока изменяется в пределах от 100 до 100

Тепловой ток сильно изменяет входные ( рис. 87, а) и выходные ( рис. 87, б) характеристики транзистора, что можно объяснить следующим. [10]

Тепловой ток резко снижается с ростом ширины запрещенной зоны. Тепловой ток уменьшается с ростом концентрации примесей вследствие снижения концентрации неосновных носителей. [11]

Меньший тепловой ток у кремниевых триодов является их заметным преимуществом, поскольку температурное влияние на режим их работы сказывается значительно слабее. [12]

Тепловой ток ISK является своеобразной характеристикой качества данного образца. В схемах с полупроводниковыми триодами ток ISK является важным параметром, используемым при расчетах. [13]

Предельный тепловой ток / Тепл — это действующее значение тока, который за время своего действия в течение 1 сек нагревает проводники до предельной температуры. [14]

Тепловые токи закрытого транзистора / со, / ко малы, и в данном случае мы ими пренебрегаем. [15]

Источник

Закон Джоуля-Ленца: определение, формулы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Тепловые приборы

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I 2 *R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U 2 /R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax) 2 и в начале пробега (mu 2 )/2 , то есть

формула приращение энергии электрона

Здесь u скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Формула полной энергии

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

Формула мощности P выделяемой в объеме

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I 2 R;
  • P = U 2 /R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Формула количества теплоты

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Читайте также:  Колебания электрического тока в теле

Тепловое действие тока

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Бытовые нагревательные приборы

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Источник



Тепловой ток диода

Видеале считалось, что обратный ток обусловлен только движением неосновных носителей, которые в полупроводнике образуются главным образом за счёт тепловой генерации пар зарядов. Поэтому этот ток называют тепловым.

Величина теплового тока диода определяется как:

где и — коэффициенты диффузии дырок и электронов соответственно и определяются количеством носителей, проходящих через единичную площадку за 1 секунду (для германия , ), и — равновесные концентрации неосновных носителей; — площадь перехода; и — ширина областей, прилегающих к металлургической границе p-n-перехода со стороны n- и p-областей соответственно.

В случае малых размеров прилегающих слоев эмиттера и базы ( ) выражение для теплового тока примет вид:

где и толщина прилегающих слоев эмиттера и базы соответственно.

Значения коэффициентов диффузии можно определить из следующего соотношения:

где и есть не что иное, как скорости генерации дырок и электронов соответственно. Таким образом, тепловой ток в идеализированном переходе, ширина которого стремится к , обусловлен генерацией неосновных носителей в объёмах полупроводников и , прилегающих к металлургической границе перехода. Из сравнения (1.1.2) и (1.1.3) ясно, что при неосновные носители могут не дойти до перехода и, следовательно, не будут участвовать в движении через запирающий слой.

Величина теплового тока также зависит и от площади перехода — с увеличением площади растет . Не менее существенна зависимость теплового тока и от концентрации неосновных носителей. Если диод образован несимметричным p-n-переходом и степень легирования p-эммитера значительно выше степени легирования n-базы ( ), то концентрация неосновных носителей в базе будет больше, чем в эмиттере, т.е. основную роль в образовании теплового тока будут играть неосновные носители базы — дырки. Выражение для теплового тока потому принимает следующий вид:

Концентрация неосновных носителей определяется формулой:

В данном случае . Подставив (1.1.6) в (1.1.5) получим следующее выражение для теплового тока:

из которого видно, что величина теплового тока пропорциональна квадрату собственной концентрации и сильно зависит от температуры.

Количество неосновных носителей заряда значительно изменяется при изменении температуры, возрастая с ее повышением, поэтому обратный тепловой ток p-n-перехода, образованный за счет неосновных носителей, характеризуется следующими температурными изменениями / /:

где — значение теплового тока при комнатной температуре .

Источник