Меню

Зависит ли направление силы ампера от направления силы тока в проводнике приведите примеры

Магнитная сила Ампера

Возьмем прямой проводник, изготовленный из алюминия, и подвесим его на тонких и гибких проводах таким образом, чтобы он находился между полюсами подковообразного постоянного магнита как на рисунке (а). Если в проводнике пропустить ток, проводник отклонится от положения равновесия — рисунок (б). Причиной такого отклонения является сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, французский физик, математик и химик Андре Мари Ампер. Именно поэтому это явление называют магнитной силой Ампера.

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, которая расположена в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к ​​линиям магнитной индукции расположен проводник.

Значение силы Ампера (FA) вычисляют по формуле:

где В — магнитная индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Угол α — это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Обратите внимание! Магнитное поле не будет действовать на проводник с током (FA= 0), если проводник расположен параллельно магнитным линиям поля (sin α = 0).

Определение
направления силы Ампера
по правилу левой руки

Чтобы определить направление силы Ампера, используют правило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

На рисунке слева показано определения направления силы Ампера, действующая на проводник, расположенный в однородном магнитном поле. Давайте определим направление тока в проводнике, направление магнитной индукции и направление силы Ампера.

Получаем формулу для определения модуля магнитной индукции

Если проводник расположен перпендикулярно к линиям магнитной индукции (α = 90 °, sin α = 1), то поле действует на проводник с максимальной силой:

Отсюда получаем формулу для определения модуля магнитной индукции:

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то изменится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

1Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера

Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.

В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.

Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.

1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).

2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.

Читайте также:  Генератор у которого обмотка возбуждения питается от отдельного источника постоянного тока

3) Приходим к выводу: проводник А привлекается к проводнику В.

Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).

2) Определим направление силы Ампера, действующая на проводник В.

3) Приходим к выводу: проводник В привлекается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.

Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?

Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:

  1. сила Ампера будет направлена ​​противоположно силе тяжести (то есть вертикально вверх)
  2. значение силы Ампера равна значению силы тяжести FA = Fтяж

Направление тока определим, воспользовавшись правилом левой руки.

Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.

Из последнего выражения найдем силу тока: I = mg/Bl

Проверим единицу, найдем значение искомой величины.

Ответ: I = 8 А; Ток в направлении от нас.

Подводим итоги

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

Источник

Зависит ли направление силы Ампера от направления силы тока в проводнике? Приведите примеры.

Ответ

Ответы

Ответ

Ответ

Ответ

1. Из какого полюса постоянного магнита выходят линии магнитного поля?
а) из северного;

2. По правилу буравчика определяют .
г) направление линий магнитного поля тока.

3. По правилу правой руки определяют .
г) направление линий магнитного поля тока.

4. По правилу левой руки определяют .

в) направление силы действующей на проводник;

5. Сила Ампера не зависит…

г) от напряжения в проводнике.

6. Единицей измерения магнитной индукции является…
е) Тл.

7. Формула магнитного потока ….

8. «Всякое изменение со временем магнитного поля приводит к возникновению переменного электрического поля, а всякое изменение со временем электрического поля порождает переменное магнитное поле» — это доказал:
в) Джеймс Максвелл;

B. Решите задачу.
I= 4А
F= 0,2Н
L= 10см=0,1м
B-?
F=BILsinα, sinα=sin90°=1, F=BIL,
B=F/(IL),
B=0,2/(4*0,1)=0,5 Тл.

Ответ

1А 3В (не точно) 8г 12А

Извини но это то что я смогла.

Ответ

Ответ

Выберите правильный ответ.Из какого полюса постоянного магнита выходят линии магнитного поля?

По правилу буравчика определяют .

г) направление линий магнитного поля тока.

Странный вопрос. Многое, но хотели услышать, видимо, этот ответ.

По правилу правой руки определяют . а) направление силы тока в проводнике:

б) направление линий магнитного поля внутри соленоида;

г) направление линий магнитного поля тока.

Можно и то и другое.

По правилу левой руки определяют .

а) направление силы тока в проводнике:

в) направление силы действующей на проводник;

Сила Ампера не зависит F = BLJsina

б) от силы тока в проводнике — J

в) от вектора магнитного поля — Bsina

Единицей измерения магнитной индукции является…

Формула магнитного потока ;

б) Ф = В s; Вообще то надо еще умножить на sina, где а угол между вектором магнитной индукции и нормалью к поверхности S «Всякое изменение со временем магнитного поля приводит к возникновению переменного электрического поля, а всякое изменение со временем электрического поля порождает переменное магнитное поле» — это доказал:

Читайте также:  Почему в генераторе появляется ток

в) Джеймс Максвелл, создатель теории электромагнитного поля.

Ответ

Ответ

ура налагала малладан

Ответ

Выберите правильный ответ.Из какой полюс постоянного магнита выходят линии магнитного поля?а) из северного; .
По правилу левой руки определяют . в) направление силы действующей на проводник;
По правилу правой руки определяют .;б) направление линий магнитного поля внутри соленоида;
.По правилу буравчика определяют .;г) направление линий магнитного поля тока.Сила Ампера зависит…;в) от индукции магнитного поля
Единица измерения магнитного потока… д) Вб;
.Формула магнитного потока в) Ф = В s;
s.Этому учёному удалось «превратить магнетизм в электричество»:а) Майк Фарадей;

Все верно но на некоторые вопросы можно дать несколько ответов,Вопросы поставлены некорректно
100% на пятерку

Источник

Закон Ампера простыми словами

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 90 0 , то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Читайте также:  Проверка трансформаторов тока встроенные в трансформатор

Проводник в магнитном поле

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Источник



18 Средний уровень

Решебник по физике Л.А. Кирик Самостоятельные и контрольные работы

1. От чего зависит направление силы, действующей на проводник с током, находящийся в магнитном поле? Объясните свой ответ.

Направление этой силы зависит от направления тока в проводнике и направления магнитных линий.

2. Как действует магнитное поле на рамку с током? Объясните схематически свой ответ.

18 Средний уровень
3. В каком случае магнитное поле не действует на проводник с током? Объясните схематически свой ответ.

Если проводник с током расположить вдоль силовых линий магнитного поля.

4. Зависит ли направление силы Ампера от направления силы тока в проводнике? Приведите примеры.

Направление силы Ампера зависит от направления линий индукции магнитного поля, которое в свою очередь зависит от направления тока в проводнике.

5. Объясните, как используют поворот рамки с током в электроизмерительных приборах?

По углу поворота рамки можно определить силу тока в проводнике. Этот факт используется в амперметрах, вольтметрах и т.д.

6. Что такое электромагнит? Чем он отличается от катушки с током и от постоянного магнита?

Постоянный магнит длительное время сохраняет свою намагниченность. Электромагнит теряет свои магнитные свойства при выключении тока в его катушке.

Источник