Меню

Живая ткань как проводник переменного тока обладает

Живая ткань как проводник переменного электрического тока. Дисперсия электропроводности и её количественная оценка

date image2014-02-24
views image3890

facebook icon vkontakte icon twitter icon odnoklasniki icon

Экспериментально установлены следующие особенности живой ткани как проводника переменного ток:

1. Сопротивление живой ткани переменном току меньше, чем постоянному.

2. Электрические характеристики ткани зависят как от её вида, так и от частоты тока.

3. С увеличением частоты полное сопротивление живой ткани нелинейно уменьшается до определенного значения, а затем остаётся практически постоянным (в большинстве на частотах свыше 10 6 Гц)

4. На определенной частоте полное сопротивление зависит также от физиологического состояния (кровенаполнения), что используется на практике. Исследование периферического кровообращения на основе измерения электрического сопротивления называются реография (импедансплетизмография).

5. При умирании живой ткани её сопротивление уменьшается и от частоты не зависит.

6. При прохождении переменного тока через живые ткани наблюдается явление, которое называется дисперсией электропроводности.

Дисперсия электропроводности — это явление зависимости полного (удельного) сопротивления живой ткани от частоты переменного тока.

Графики такой зависимости называют дисперсионными кривыми. Дисперсионные кривые строят в прямоугольной системе координат, где по вертикали откладывают значения полного (Z) или удельного сопротивления, а по горизонтали — частоту в логарифмическом масштабе (Lg n).

Частотные зависимости по форме кривой для разных тканей сходный, но отличается значением сопротивления.

Имеется несколько диапазонов частот, на которых дисперсия особенно выражена. Один из них соответствует интервалу 10 2 -10 6 Гц

Особенности дисперсии:

1. Присуща только живым тканям.

2. Более выражена на частотах до 1 МГц.

3. На практике используется для оценки физиологического состояния и жизнеспособности тканей.

Количественно оценка дисперсии проводиться по коэффициенту дисперсии (К).

Коэффициент дисперсии это безразмерная величина, равная отношению низкочастотного (10 2 ) полного (или удельного) сопротивления к высокочастотному (10 6 Гц).

Z1 – полное сопротивление на частоте 10 2 Гц

Z2 – полное сопротивление на частоте 10 6 Гц

r1, r2 — удельное сопротивление на этих частотах

Значение коэффициента дисперсии зависит от вида ткани, её физиологического состояния, эволюционной стадии развития животного. Например, для печени животного К = 9 -10 единиц, а для печени лягушки 2 -3 единицы. При умирании ткани коэффициент дисперсии стремиться к единице.

Явление дисперсии связывают с наличием в живых тканях поляризации, которая с увеличением частоты меньше влияет на полное сопротивление. Поэтому коэффициент дисперсии часто называют коэффициентом поляризации.

Кроме частотных зависимостей в живых тканях отмечаются фазовые сдвиги между током и напряжением, которые тоже, но в меньшей степени, зависят от частоты.

Фазовые сдвиги тоже уменьшаются при умирании тканей и, в перспективе, могут быть использованы для практических целей.

Источник

Электропроводность живых тканей

Электрические свойства биологических тканей.

При решении основных медицинских задач диагностики и терапии заболеваний широко используются электромагнитные явления, что, в свою очередь, предполагает знание электромагнитных характеристик биологических тканей.

Современные представления об электрических и магнитных свойствах живых тканей основаны на фактах о молекулярной организации биологических мембран и, в значительно меньшей степени, на сведениях о квантово‑механических свойствах физиологически активных молекул. Характеризуя электрические свойства живых тканей, следует учитывать, что они являются композиционными средами, т.е. одни структурные элементы обладают свойствами проводников, а другие — диэлектриков, поэтому основное внимание при исследованиях уделяется электропроводящим и диэлектрическим свойствам живых тканей.

Упорядоченное движение свободных зарядов, возникающее в проводнике под действием электрического поля, называется током проводимости. Сила тока равна заряду, протекающему по проводнику за одну секунду, обозначается I и измеряется в амперах (А).

Закон Ома связывает силу тока (I), электрическое напряжение (U) и сопротивление проводника (R): I=U/R. Величина обратная сопротивлению (1/R) есть проводимость проводника, обозначается G и измеряется в сименсах (См= Ом ‑1 ).

Наряду с силой тока в электродинамике используют плотность тока (j), определяемую как j=dI/dS. Где j — плотность тока, I — сила тока, S — площадь поперечного сечения проводника. j — вектор, направленный в сторону движения положительных зарядов. Закон Ома для плотности тока: j=1/ρ·Е. Где 1/ρ=L — удельная проводимость, E — напряженность электрического поля в проводнике. Для проводников проводимость больше 10 6 См·м ‑1 , для диэлектриков меньше 10 ‑8 См·м ‑1 . В зависимости от вида и природы носителей, проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают, например, металлы. Электролиты обладают ионной проводимостью. Дырочная проводимость наблюдается в полупроводниковых кристаллах.

Читайте также:  Применение высоких токов частоты в медицине

Рис.5. Схема измерения проводимости или сопротивления.

Электропроводность живых тканей связана с присутствием в них ионов, которые являются носителями зарядов, создающими в организме токи проводимости под действием электромагнитных полей (ЭМП), излучаемых как внешними источниками, так и генерируемых живыми клетками. Электропроводность живых тканей определяется, прежде всего, электрическими свойствами крови, лимфы, межклеточной жидкости и цитозоля. Удельная электропроводность этих электролитов составляет 0,1–1,0 См·м ‑1 . У костной ткани проводимость имеет значение порядка 10 ‑7 См·м ‑1 .

Электропроводность целых органов на 4–6 порядков ниже электропроводности жидкостей, находящихся в них. Это связано с тем, что электролиты составляют малую часть клетки. В клетках электролиты заключены в мельчайшие отсеки — «компартменты», образованные биологическими мембранами, которые составляют более 50% массы клетки. Мембраны же являются диэлектриками.

Рис. 6. Зависимость силы тока, текущего через живую ткань при постоянном приложенном напряжении, от времени.

Процесс измерения проводимости связан с определением силы тока, текущего через проводник, измерения напряжения, приложенного к проводнику, и расчету сопротивления по закону Ома. Схема измерения показана на рис. 5. Однако измерение проводимости биологических тканей на постоянном токе невозможно из‑за больших погрешностей, связанных с зависимостью силы тока от времени измерения. С течением времени ток уменьшается до определенного уровня. Эта зависимость представлена на рис. 6. Релаксационный процесс установления равновесия можно объяснить поляризацией живой ткани. Поляризация — это процесс перемещения связанных зарядов под действием электрического поля и образования вследствие этого электродвижущей силы, которая направлена противоположно внешнему полю. Ее называют ЭДС поляризации. Для живой ткани закон Ома можно записать в виде: I=U-Eп/R, где U — приложенное напряжение, I — сила тока, R — активное сопротивление ткани, Eп — ЭДС поляризации, зависящая от приложенного напряжения и времени. Изменение силы тока может быть обусловлено и процессом заряда тканевых емкостей. Релаксационный процесс не позволяет однозначно измерить проводимость живой ткани.

Чтобы релаксационный процесс не влиял на результат измерения проводимости живых тканей, необходимо использовать переменные токи. Простейший переменный ток — синусоидальный, у которого только два из трех независимых параметров — амплитуда и частота. Полное сопротивление электрической цепи при синусоидальных напряжениях и токах называют импедансом и обозначают Z. В общем случае, импеданс имеет активную R и реактивную компоненту, связанную с сопротивлением конденсатора или индуктивности. Сопротивление конденсатора RС=1/ωС, сопротивление индуктивности RL=Lω, активное сопротивление R от частоты не зависит. Клеточные мембраны биологических клеток определяют емкостное сопротивление.

Рис. 7. Схематичная зависимость импеданса живой ткани от частоты протекающего через неё электрического тока.

Омическое сопротивление зависит от ионной проводимости. Индуктивное сопротивление биологической ткани крайне мало (Glaser), поэтому можно считать, что импеданс живой ткани содержит только активную и емкостную составляющие. При определении импеданса электрической цепи, включающей резисторы и конденсаторы, необходимо также учитывать сдвиг фазы, отражающий свойства диэлектриков. Для биологических объектов характерен большой сдвиг фаз между силой тока и напряжением, что говорит о значительной доли емкостной составляющей в полном сопротивлении. Для кожи человека, например, при частоте 1 кГц сдвиг фаз равен 55°.

Читайте также:  Движение частиц по току крови называется

Для живых тканей характерно уменьшение импеданса по мере повышения частоты внешнего электромагнитного поля. Зависимость импеданса от частоты называют дисперсией импеданса (рис. 7). Импеданс живой ткани зависит от ее физиологического состояния, и его значение может быть использовано для диагностики. Диагностический метод, основанный на измерении импеданса тканей, называется реографией.

Рис. 8. Электрические модели живой ткани.

В клинической практике используются следующие основные методы оценки электрических параметров живых тканей.

1. По кривой Z(ω) оценивают уровень обмена веществ и жизнеспособность органов и тканей, определяя коэффициент поляризации Кп=Zнч/Zвч.

(Zнч=10 2 Гц; Zвч=10 6 Гц). Жизнеспособная ткань имеет Кп>1, причем значения коэффициента поляризации тем больше, чем выше уровень обмена веществ в ткани и чем лучше сохранена ее структурная целостность. При отмирании ткани ее коэффициент поляризации стремится к 1. Этот метод используется для оценки жизнеспособности тканевых трансплантатов при пересадке органов, для определения зоны раневого процесса в ходе хирургической обработки ран, для характеристики ишемии, отека и т.д., и т.п.

2. Метод реоплетизмографии позволяет, изучая динамику изменения активной составляющей импеданса R, судить о кровенаполнении исследуемого органа. Чем больше крови содержится в органе, тем се его электрическое сопротивление.

3. По динамике электрического сопротивления кожи судят о так называемых кожно‑гальванических реакциях, по которым изучают эмоции, утомление и другие состояния организма.

Импеданс живой ткани можно моделировать с помощью эквивалентных схем. На рис. 8приведены две такие схемы.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

II. Особенности импеданса живых тканей. Эквивалентная электрическая схема живой ткани.

При пропускании электрического тока через живую ткань эту ткань можно представить как электрическую цепь, состоящую из активного и емкостного сопротивлений (выделение тепла и уменьшение Z живой ткани с увеличением частоты). Аналогов индуктивности в живой ткани не обнаружено. Следовательно, живая ткань представляет собой неполную электрическую цепь.

Живая ткань как проводник переменного тока имеет следующие особенности:

1. Полное сопротивление живой ткани Z зависит от ее вида, физиологического состояния (кровенаполнения) и от частоты тока.

2. Сопротивление живой ткани переменному току меньше чем постоянному.

3. С увеличением частоты импеданс живой ткани нелинейно уменьшается до определенного значения, а затем остается постоянным.

Для последовательной цепи:

Т.к. XC = 1 / 2pnС, т. е. с увеличением “n” ХС – уменьшается Þ «Z» живой ткани уменьшается.

Эквивалентная электрическая схема живой ткани.

Это условная модель, которая характеризует ткань как проводник переменного тока.

В основе схемы лежат три положения:

1. Содержимое клетки и внеклеточная среда являются проводниками с ионной проводимостью. Они обладают активным сопротивлением клетки Rкл и активным сопротивлением среды Rср.

2. Клеточная мембрана – диэлектрик с небольшой ионной проводимостью, следовательно, имеется небольшое активное сопротивление мембраны Rм.

3. Содержимое клетки и внеклеточная среда, разделенные мембраной, являются конденсаторами определенной емкости (СМ).

При построении эквивалентной схемы, например, крови, необходимо учитывать пути тока. Их два:

а) Через клетку – путь представлен активным сопротивлением содержимого клетки (RКЛ), а также сопротивлением и емкостью мембраны (RM, CM).

б) В обход клетки через клеточную среду – путь представлен только сопротивлением среды (RСР).

Анализ схемы показывает, что при увеличении частоты тока проводимость клеточной мембраны увеличивается (т. к. уменьшается ХС). Следовательно, полное сопротивление тканевой среды Z будет уменьшаться.

III. Особенности живой ткани как проводника электрического тока. Дисперсия электропроводности и её оценка.

Читайте также:  Физик который открыл ток

Живая ткань как проводник переменного тока имеет следующие особенности:

1. Полное сопротивление живой ткани зависит от её вида, физиологического состояния и от частоты тока.

2. Сопротивление живой ткани переменному току меньше, чем постоянному.

3. С увеличением частоты импеданс живой ткани нелинейно уменьшается до определенного значения, а затем остается постоянным.

При прохождении переменного тока через живые ткани наблюдается дисперсия электропроводности – зависимости импеданса живой ткани от частоты переменного тока.

Дисперсионные кривые.

Интервал частот n = 10 2 ¸ 10 6 Гц – один из интервалов, на котором дисперсия ярко выражена. Таких интервалов существует несколько.

1. Дисперсия присуща только живым тканям и отсутствует у мертвых тканей.

2. Наиболее выражена на частотах до 1 МГц.

3. На практике используется для оценки физиологического состояния и жизнеспособности ткани.

Не нашли, что искали? Воспользуйтесь поиском:

Источник



Особенности импеданса живой ткани и её эквивалентная электрическая схема.

При пропускании тока через живую ткань, её можно рассматривать как электрическую цепь, состоящую из определенных элементов.

Экспериментально установлено, что это цепь обладает свойствами активного сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у живой ткани практически не обнаруживается. Таким образом, живая ткань представляет собой сложную, но не полную электрическую цепь.

Импеданс живой ткани можно рассматривать как для последовательного, так и для параллельного соединения её элементов.

При последовательном соединении токи через элементы равны, общее приложенное напряжение будет векторной суммой напряжений на R и C элементах и формула импеданса последовательной цепи будет иметь вид:

Z_ — импеданс последовательной цепи,

R — её активное сопротивление,

XC — ёмкостное сопротивление.

При параллельном соединении напряжения на R и C элементах равны, общий ток будет векторной суммой токов каждого элемента, а фомула импеданса будет следующей:

Теоретические формулы импеданса живой ткани при параллельном и последовательном соединении её элементов от экспериментальных отличаются следующим:

1.При последовательной схеме соединения практические данные дают большие отклонения на низких частотах.

2.При параллельной схеме эти измерения показывают конечное значение Z, хотя теоретически оно должно стремиться к нулю.

Эквивалентная электрическая схема живой ткани – это условная модель, приближенно характеризующаяживую ткань, как проводник переменного тока.

Схема позволяет судить:

1.Какими электрическими элементами обладает ткань

2.Как соединены эти элементы.

3.Как будут меняться свойства ткани при изменении частоты тока.

В основе схемы лежат три положения:

1.Внеклеточная среда и содержимое клетки есть ионные проводники с активным сопротивлением среды Rср и клетки Rк.

2.Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной проводимостью, а, следовательно, и сопротивлением мембраны Rм.

3.Внеклеточная среда и содержимое клетки, разделённые мембраной, являются конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см 2 ).

Если в качестве модели живой ткани взять жидкую тканевую среду – кровь, содержащую только эритроциты, то при составлении эквивалентной схемы нужно учитывать пути электрического тока.

1.В обход клетки, через внеклеточную среду.

Путь в обход клетки представлен только сопротивлением средыRср.

Путь через клетку сопротивлением содержимого клетки Rк, а также сопротивлением и ёмкостью мембраны.Rм, См.

Если заменить электрические характеристики соответствующими обозначениями, то получим эквивалентные схемы разной степени точности:

Схема Фрике (ионная проводимость не

Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)

Обозначения на схеме:

Rcp — активное сопротивление клеточной среды

Rk — Сопротивление клеточного содержимого

Cm — ёмкость мембраны

Rm — сопротивление мембраны.

Анализ схемы показывает, что при увеличении частоты тока проводимость клеточных мембран увеличивается, а полное сопротивление тканевой среды уменьшается, что соответствует практически проведенным измерениям.

Источник